Contact force estimation for terminal traction human-machine interaction based on sEMG

被引:0
作者
Lyu, Hang [1 ,2 ,3 ,4 ]
Lin, Gao [1 ,3 ,4 ]
Zhang, Dao-Hui [1 ,3 ,4 ]
Zhao, Xin-Gang [1 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Shenyang Inst Automat, State Key Lab Robot, Shenyang 110016, Peoples R China
[2] Northeastern Univ, Coll Informat Sci & Engn, Shenyang 110016, Peoples R China
[3] Chinese Acad Sci, Inst Robot, Shenyang 110169, Peoples R China
[4] Chinese Acad Sci, Inst Intelligent Mfg, Shenyang 110169, Peoples R China
来源
2022 41ST CHINESE CONTROL CONFERENCE (CCC) | 2022年
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
sEMG; Feature Extraction; Muscle Synergy; LSTM; Force Estimation;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, starting from the interaction force when the human body performs terminal traction, by comparing and selecting the most suitable sEMG features for upper limb terminal force estimation, and using muscle synergistic extraction to solve the problem of the multi-degree-of-freedom control mechanism of the upper limb, the long short-term memory neural network model (LSTM) is finally used to establish the contact force estimation model of the upper limb end. The root mean square errors of NMF-LSTM method in x, y and z directions are 6.40 +/- 0.39N, 5.14 +/- 0.34N and 3.49 +/- 0.20N respectively. The average correlation coefficients in x, y and z directions are 0.93, 0.95 and 0.75 respectively, which is better than the results of PCA-LSTM, MLP and DT models.
引用
收藏
页码:7252 / 7257
页数:6
相关论文
共 13 条
  • [1] Allouch S., 2013, P 2 IEEE INT C ADV B
  • [2] Neuromusculoskeletal modeling: Estimation of muscle forces and joint moments and movements from measurements of neural command
    Buchanan, TS
    Lloyd, DG
    Manal, K
    Besier, TF
    [J]. JOURNAL OF APPLIED BIOMECHANICS, 2004, 20 (04) : 367 - 395
  • [3] A SEMG-Force Estimation Framework Based on a Fast Orthogonal Search Method Coupled with Factorization Algorithms
    Chen, Xiang
    Yuan, Yuan
    Cao, Shuai
    Zhang, Xu
    Chen, Xun
    [J]. SENSORS, 2018, 18 (07)
  • [4] A supervised feature-projection-based real-time EMG pattern recognition for multifunction myoelectric hand control
    Chu, Jun-Uk
    Moon, Inhyuk
    Lee, Yun-Jung
    Kim, Shin-Ki
    Mun, Mu-Seong
    [J]. IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2007, 12 (03) : 282 - 290
  • [5] Hashemi J., 2013, NOVEL METHODS SEMG F
  • [6] Ibrahim A., 2016, ANAL ELECT EMG SIGNA
  • [7] A Study on Estimation of Joint Force Through Isometric Index Finger Abduction With the Help of SEMG Peaks for Biomedical Applications
    Na, Youngjin
    Choi, Changmok
    Lee, Hae-Dong
    Kim, Jung
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2016, 46 (01) : 2 - 8
  • [8] Park W. I., 2009, P REH ROB 2009 ICORR
  • [9] Real-time embedded frame work for sEMG skeletal muscle force estimation and LQG control algorithms for smart upper extremity prostheses
    Potluri, Chandrasekhar
    Anugolu, Madhavi
    Naidu, D. Subbaram
    Schoen, Marco P.
    Chiu, Steve C.
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2015, 46 : 67 - 81
  • [10] Reaz MBI, 2006, BIOL PROCED ONLINE, V8, P11, DOI [10.1251/bpo124, 10.1251/bpo115]