On toric generators in the unitary and special unitary bordism rings

被引:14
作者
Lu, Zhi [1 ,3 ]
Panov, Taras [2 ,4 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[2] Moscow State Univ Leninskie Gory, Dept Math & Mech, Moscow 119991, Russia
[3] Inst Theoret & Expt Phys, Main Cheremushkinskaya St, Moscow 117218, Russia
[4] Russian Acad Sci, Inst Informat Transmiss Problems, Bolshoy Karetny Lane, Moscow 127051, Russia
来源
ALGEBRAIC AND GEOMETRIC TOPOLOGY | 2016年 / 16卷 / 05期
基金
俄罗斯基础研究基金会;
关键词
POLYTOPES; COBORDISM; MANIFOLDS; SPACES;
D O I
10.2140/agt.2016.16.2865
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a new family of toric manifolds generating the unitary bordism ring. Each manifold in the family is the complex projectivisation of the sum of a line bundle and a trivial bundle over a complex projective space. We also construct a family of special unitary quasitoric manifolds which contains polynomial generators of the special unitary bordism ring with 2 inverted in dimensions > 8. Each manifold in the latter family is obtained from an iterated complex projectivisation of a sum of line bundles by amending the complex structure to make the first Chern class vanish.
引用
收藏
页码:2865 / 2893
页数:29
相关论文
共 17 条
[1]   CHARACTERISTIC CLASSES AND HOMOGENEOUS SPACES .1. [J].
BOREL, A ;
HIRZEBRUCH, F .
AMERICAN JOURNAL OF MATHEMATICS, 1958, 80 (02) :458-538
[2]   Coefficient rings of formal group laws [J].
Buchstaber, V. M. ;
Ustinov, A. V. .
SBORNIK MATHEMATICS, 2015, 206 (11) :1524-1563
[3]   Toric Genera [J].
Buchstaber, Victor ;
Panov, Taras ;
Ray, Nigel .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2010, 2010 (16) :3207-3262
[4]   SPACES OF POLYTOPES AND COBORDISM OF QUASITORIC MANIFOLDS [J].
Buchstaber, Victor M. ;
Panov, Taras E. ;
Ray, Nigel .
MOSCOW MATHEMATICAL JOURNAL, 2007, 7 (02) :219-242
[5]  
Buchstaber VM, 2015, AM MATH SOC, V204
[6]   Toric manifolds and complex cobordisms [J].
Bukhshtaber, VM ;
Ray, N .
RUSSIAN MATHEMATICAL SURVEYS, 1998, 53 (02) :371-373
[7]  
Conner P E, 1966, AM MATH SOC, V60
[8]   CONVEX POLYTOPES, COXETER ORBIFOLDS AND TORUS ACTIONS [J].
DAVIS, MW ;
JANUSZKIEWICZ, T .
DUKE MATHEMATICAL JOURNAL, 1991, 62 (02) :417-451
[9]  
EPSTEIN D. B. A, 1962, ANN MATH STUDIES, V50
[10]  
Granville A., 1997, CMS C P, P253