Tensor product weight modules over the Virasoro algebra

被引:35
作者
Chen, Hongjia [1 ]
Guo, Xiangqian [2 ]
Zhao, Kaiming [3 ,4 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
[2] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R China
[3] Wilfrid Laurier Univ, Dept Math, Waterloo, ON N2L 3C5, Canada
[4] Hebei Normal Teachers Univ, Coll Math & Informat Sci, Shijiazhuang 050016, Hebei, Peoples R China
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2013年 / 88卷
关键词
LIE-ALGEBRA; REPRESENTATIONS; CLASSIFICATION;
D O I
10.1112/jlms/jdt046
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The tensor product of highest weight modules with intermediate series modules over the Virasoro algebra was discussed by Zhang [A class of representations over the Virasoro algebra, J. Algebra 190 (1997) 1-10]. Since then the irreducibility problem for the tensor products has been open. In this paper, we determine the necessary and sufficient conditions for these tensor products to be simple. From non-simple tensor products, we can get other interesting simple Virasoro modules. We also obtain that any two such tensor products are isomorphic if and only if the corresponding highest weight modules and intermediate series modules are isomorphic, respectively. Our method is to develop a 'shifting technique' and to widely use Feigin-Fuchs' theorem on singular vectors of Verma modules over the Virasoro algebra.
引用
收藏
页码:829 / 844
页数:16
相关论文
共 27 条
[1]   On the structure of Verma modules over Virasoro and Neveu-Schwarz algebras [J].
Astashkevich, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 186 (03) :531-562
[2]   A family of irreducible representations of the Witt Lie algebra with infinite-dimensional weight spaces [J].
Conley, CH ;
Martin, C .
COMPOSITIO MATHEMATICA, 2001, 128 (02) :153-175
[3]  
Di Francesco P., 1997, CONFORMAL FIELD THEO, DOI [10.1007/978-1-4612-2256-9, DOI 10.1007/978-1-4612-2256-9]
[4]  
Dong C., 1994, Algebraic Groups and Their Generalizations: Quantum and Infinite-Dimensional Methods, V56 II, P295
[5]  
Feigin B., 1990, Adv. Stud. Contemp. Math., P465
[6]   Whittaker pairs for the Virasoro algebra and the Gaiotto-Bonelli-Maruyoshi-Tanzini states [J].
Felinska, Ewa ;
Jaskolski, Zbigniew ;
Kosztolowicz, Michal .
JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (03)
[7]   VERTEX OPERATOR-ALGEBRAS ASSOCIATED TO REPRESENTATIONS OF AFFINE AND VIRASORO ALGEBRAS [J].
FRENKEL, IB ;
ZHU, YC .
DUKE MATHEMATICAL JOURNAL, 1992, 66 (01) :123-168
[8]  
Goddard P., 1986, Int. J. Mod. Phys. A, V01, P303, DOI 10.1142/S0217751X86000149
[9]   Fraction representations and highest-weight-like representations of the Virasoro algebra [J].
Guo, Xiangqian ;
Lu, Rencai ;
Zhao, Kaiming .
JOURNAL OF ALGEBRA, 2013, 387 :68-86
[10]  
Iohara K, 2011, SPRINGER MONOGR MATH, P99, DOI 10.1007/978-0-85729-160-8