Optimizing the number of classes in automated zooplankton classification

被引:35
作者
Fernandes, Jose A. [1 ,2 ]
Irigoien, Xabier [1 ]
Boyra, Guillermo [1 ]
Lozano, Jose A. [2 ]
Inza, Inaki [2 ]
机构
[1] AZTI TECNALIA, Div Marine Res, Herrera Kaia Portualdea ZG, E-20110 Pasaia, Spain
[2] Univ Basque Country, Dept Comp Sci & AI, ISG, E-20018 Donostia San Sebastian, Spain
关键词
PLANKTON; IDENTIFICATION; VOLUME;
D O I
10.1093/plankt/fbn098
中图分类号
Q17 [水生生物学];
学科分类号
071004 ;
摘要
Zooplankton biomass and abundance estimation, based on surveys or time-series, is carried out routinely. Automated or semi-automated image analysis processes, combined with machine-learning techniques for the identification of plankton, have been proposed to assist in sample analysis. A difficulty in automated plankton recognition and classification systems is the selection of the number of classes. This selection can be formulated as a balance between the number of classes identified (zooplankton taxa) and performance (accuracy; correctly classified individuals). Here, a method is proposed to evaluate the impact of the number of selected classes, in terms of classification performance. On the basis of a data set of classified zooplankton images, a machine-learning method suggests groupings that improve the performance of the automated classification. The end-user can accept or reject these mergers, depending on their ecological value and the objectives of the research. This method permits both objectives to be equally balanced: (i) maximization of the number of classes and (ii) performance, guided by the end-user.
引用
收藏
页码:19 / 29
页数:11
相关论文
共 26 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS, V55
[2]   Estimating zooplankton biomass through image analysis [J].
Alcaraz, M ;
Saiz, E ;
Calbet, A ;
Trepat, I ;
Broglio, E .
MARINE BIOLOGY, 2003, 143 (02) :307-315
[3]  
ALPAYDIN E, 2004, INTRO MACHINE LEARNI, P17
[4]  
[Anonymous], 474 STANF U DEP STAT
[5]   RAPID Research on Automated Plankton Identification [J].
Benfield, Mark C. ;
Grosjean, Philippe ;
Culverhouse, Phil F. ;
Irigoien, Xabier ;
Sieracki, Michael E. ;
Lopez-Urrutia, Angel ;
Dam, Hans G. ;
Hu, Qiao ;
Davis, Cabell S. ;
Hansen, Allen ;
Pilskaln, Cynthia H. ;
Riseman, Edward M. ;
Schultz, Howard ;
Utgoff, Paul E. ;
Gorsky, Gabriel .
OCEANOGRAPHY, 2007, 20 (02) :172-187
[6]  
Bouckaert RR, 2004, LECT NOTES ARTIF INT, V3056, P3
[7]   Do experts make mistakes?: A comparison of human and machine identification of dinoflagellates [J].
Culverhouse, PF ;
Williams, R ;
Reguera, B ;
Herry, V ;
González-Gil, S .
MARINE ECOLOGY PROGRESS SERIES, 2003, 247 :17-25
[8]   Automatic image analysis of plankton: future perspectives [J].
Culverhouse, Phil F. ;
Williams, Robert ;
Benfield, Mark ;
Flood, Per R. ;
Sell, Anne F. ;
Mazzocchi, Maria Grazia ;
Buttino, Isabella ;
Sieracki, Mike .
MARINE ECOLOGY PROGRESS SERIES, 2006, 312 :297-309
[9]  
DONAMUKKALA R, 2005, P 5 INT C 3 D DIG IM
[10]   Bayesian network classifiers [J].
Friedman, N ;
Geiger, D ;
Goldszmidt, M .
MACHINE LEARNING, 1997, 29 (2-3) :131-163