Investigation on LSTM Recurrent N-gram Language Models for Speech Recognition

被引:11
作者
Tueske, Zoltan [1 ,2 ]
Schlueter, Ralf [1 ]
Ney, Hermann [1 ]
机构
[1] Rhein Westfal TH Aachen, Dept Comp Sci, Human Language Technol & Pattern Recognit, D-52056 Aachen, Germany
[2] IBM Res, Thomas J Watson Res Ctr, POB 704, Yorktown Hts, NY 10598 USA
来源
19TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2018), VOLS 1-6: SPEECH RESEARCH FOR EMERGING MARKETS IN MULTILINGUAL SOCIETIES | 2018年
基金
欧洲研究理事会;
关键词
speech recognition; language-modeling; LSTM; n-gram; NEURAL-NETWORKS;
D O I
10.21437/Interspeech.2018-2476
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recurrent neural networks (NN) with long short-term memory (LSTM) are the current state of the art to model long term dependencies. However, recent studies indicate that NN language models (LM) need only limited length of history to achieve excellent performance. In this paper, we extend the previous investigation on LSTM network based n-gram modeling to the domain of automatic speech recognition (ASR). First, applying recent optimization techniques and up to 6-layer LSTM networks, we improve LM perplexities by nearly 50% relative compared to classic count models on three different domains. Then, we demonstrate by experimental results that perplexities improve significantly only up to 40-grams when limiting the LM history. Nevertheless, the ASR performance saturates already around 20-grams despite across sentence modeling. Analysis indicates that the performance gain of LSTM NNLM over count models results only partially from the longer context and cross sentence modeling capabilities. Using equal context, we show that deep 4-gram LSTM can significantly outperform large interpolated count models by performing the backing off and smoothing significantly better. This observation also underlines the decreasing importance to combine state-of-the-art deep NNLM with count based model.
引用
收藏
页码:3358 / 3362
页数:5
相关论文
共 37 条
[1]  
[Anonymous], 1997, Neural Computation
[2]  
[Anonymous], 1983, SOV MATH DOKL
[3]  
[Anonymous], 2016, ICLR WORKSH
[4]  
[Anonymous], 2016, Exploring the limits of language modeling
[5]  
[Anonymous], 2012, ABS12070580 CORR
[6]  
[Anonymous], 2014, P INT
[7]  
[Anonymous], 2015, P INT C LEARN REPR I
[8]  
Appleyard J., 2016, OPTIMIZING PERFORMAN
[9]  
Arisoy E, 2012, P NAACL HLT 2012 WOR, P20
[10]  
Bengio Y, 2001, ADV NEUR IN, V13, P932