MULTIPLICITY OF SOLUTIONS FOR THE NONCOOPERATIVE p-LAPLACIAN OPERATOR ELLIPTIC SYSTEM WITH NONLINEAR BOUNDARY CONDITIONS

被引:1
作者
Liang, Sihua [1 ]
Zhang, Jihui [2 ]
机构
[1] Changchun Normal Univ, Coll Math, Changchun 130032, Jilin, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210046, Jiangsu, Peoples R China
关键词
p-Laplacian operator; limit index; critical growth; concentration-compactness principle; FUNCTIONALS;
D O I
10.1051/cocv/2011189
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we study the multiplicity of solutions for a class of noncooperative p-Laplacian operator elliptic system. Under suitable assumptions, we obtain a sequence of solutions by using the limit index theory.
引用
收藏
页码:930 / 940
页数:11
相关论文
共 16 条
[1]   ON CRITICAL-POINT THEORY FOR INDEFINITE FUNCTIONALS IN THE PRESENCE OF SYMMETRIES [J].
BENCI, V .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 274 (02) :533-572
[2]   Existence results for the p-Laplacian with nonlinear boundary conditions [J].
Bonder, JF ;
Rossi, JD .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 263 (01) :195-223
[3]  
BONDER JF, 1999, ELECT J DIFFERENTIAL, V40, P1
[4]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[5]  
Chipot M., 1996, Adv. Differ. Equ, V1, P91
[6]   Multiplicity of solutions for a noncooperative p-Laplacian elliptic system in RN [J].
Huang, DW ;
Li, YQ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 215 (01) :206-223
[7]   SOME REMARKS ON THE LUSTERNIK-SCHNIRELMAN METHOD FOR NON-DIFFERENTIABLE FUNCTIONALS INVARIANT WITH RESPECT TO A FINITE-GROUP ACTION [J].
KRAWCEWICZ, W ;
MARZANTOWICZ, W .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1990, 20 (04) :1041-1049
[8]  
LI YQ, 1995, NONLINEAR ANAL-THEOR, V25, P1371
[9]   Multiplicity of solutions for a noncooperative elliptic system with critical Sobolev exponent [J].
Lin, Fang ;
Li, Yongqing .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2009, 60 (03) :402-415
[10]  
Lindenstrauss J., 1977, CLASSICAL BANACH SPA, VI