A Lagrangian Approach for the Incompressible Navier-Stokes Equations with Variable Density

被引:140
作者
Danchin, Raphael [1 ]
Mucha, Piotr Boguslaw [2 ]
机构
[1] Univ Paris Est Creteil, LAMA, UMR 8050, F-94010 Creteil, France
[2] Uniwersytet Warszawski, Inst Matemat Stosowanej & Mech, PL-02097 Warsaw, Poland
关键词
D O I
10.1002/cpa.21409
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the Cauchy problem for the inhomogeneous Navier-Stokes equations in the whole n-dimensional space. Under some smallness assumption on the data, we show the existence of global-in-time unique solutions in a critical functional framework. The initial density is required to belong to the multiplier space of (B)over-dot(p,1)(n/p-1)(R-n). In particular, piecewise-constant initial densities are admissible data provided the jump at the interface is small enough and generate global unique solutions with piecewise constant densities. Using Lagrangian coordinates is the key to our results, as it enables us to solve the system by means of the basic contraction mapping theorem. As a consequence, conditions for uniqueness are the same as for existence. (c) 2012 Wiley Periodicals, Inc.
引用
收藏
页码:1458 / 1480
页数:23
相关论文
共 15 条
[1]  
Abidi H, 2007, REV MAT IBEROAM, V23, P537
[2]   Global existence for an nonhomogeneous fluid [J].
Abidi, Hammadi ;
Paicu, Marius .
ANNALES DE L INSTITUT FOURIER, 2007, 57 (03) :883-917
[3]  
Antontsev S.N., 1990, STUDIES MATH ITS APP, V22
[4]  
Bahouri H., 2011, GRUNDLEHREN MATH WIS, V343
[5]   Strong solutions of the Navier-Stokes equations for nonhomogeneous incompressible fluids [J].
Choe, HJ ;
Kim, H .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (5-6) :1183-1201
[6]   Density-dependent incompressible viscous fluids in critical spaces [J].
Danchin, R .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2003, 133 :1311-1334
[7]  
Danchin R., CRITICAL FU IN PRESS
[8]   A critical functional framework for the inhomogeneous Navier-Stokes equations in the half-space [J].
Danchin, Raphael ;
Mucha, Piotr Boguslaw .
JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 256 (03) :881-927
[9]   Strong solutions and weak-strong uniqueness for the nonhomogeneous Navier-Stokes system [J].
Germain, Pierre .
JOURNAL D ANALYSE MATHEMATIQUE, 2008, 105 (1) :169-196
[10]  
Ladyzhenskaya O., 1978, J SOVIET MATH, V9, P697