Ion-Pairing Strength in Polyelectrolyte Complexes

被引:248
作者
Fu, Jingcheng [1 ]
Fares, Hadi M. [1 ]
Schlenoff, Joseph B. [1 ]
机构
[1] Florida State Univ, Dept Chem & Biochem, Tallahassee, FL 32306 USA
基金
美国国家科学基金会;
关键词
POLYCATION-POLYANION COMPLEXES; AQUEOUS-SOLUTIONS; PHASE-BEHAVIOR; SUBSEQUENT ADDITION; EXPONENTIAL-GROWTH; POLYION COMPLEX; MULTILAYERS; SALT; STOICHIOMETRY; COACERVATION;
D O I
10.1021/acs.macromol.6b02445
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Polyelectrolyte complexes, PECs, are spontaneously formed blends of polyelectrolytes bearing positive, Pol(+), and negative, Pol(-), repeat units. Many interesting PEC morphologies have been observed, ranging from dense precipitates to liquidlike coacervates to quasi-stable nanoparticles, depending on the identity of the polymers and the preparation conditions. While the number of polyelectrolytes available to synthesize these materials is large and increasing, the corresponding number of Pol(+)/Por(-) combinations is vast. This work quantitatively compares the binding strengths between a selection of positive and negative polyelectrolytes by evaluating the extent to which ion pairs between them are broken by a common salt, KBr. Comparison of association constants or Gibbs free energies between different classes of ionic functionality reveals that more "hydrophilic" PECs are more weakly associated, small primary amines bind strongly, carboxylates bind weakly, and aromatic sulfonates interact more strongly than aliphatic ones. The use of "charge density" to predict binding strength is shown not to be justified. Ion diffusion coefficients through PECs also approximately follow water content and are inversely related to interaction strength.
引用
收藏
页码:1066 / 1074
页数:9
相关论文
共 72 条
[1]  
AHMED LS, 1994, J MACROMOL SCI PURE, VA31, P17
[2]   PH-INDUCED DENATURATION OF PROTEINS - A SINGLE SALT BRIDGE CONTRIBUTES 3-5 KCAL MOL TO THE FREE-ENERGY OF FOLDING OF T4-LYSOZYME [J].
ANDERSON, DE ;
BECKTEL, WJ ;
DAHLQUIST, FW .
BIOCHEMISTRY, 1990, 29 (09) :2403-2408
[3]   KINETICS AND MECHANISM OF INTERPOLYELECTROLYTE EXCHANGE AND ADDITION-REACTIONS [J].
BAKEEV, KN ;
IZUMRUDOV, VA ;
KUCHANOV, SI ;
ZEZIN, AB ;
KABANOV, VA .
MACROMOLECULES, 1992, 25 (17) :4249-4254
[4]  
Bixler H.J., 1969, Encyclopedia of Polymer Science and Technoogy, V10, P765
[5]   Ideal mixing in polyelectrolyte complexes and multilayers: Entropy driven assembly [J].
Bucur, Claudiu B. ;
Sui, Zhijie ;
Schlenoff, Joseph B. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (42) :13690-13691
[6]   Swelling and thermal behaviors of starch-based superabsorbent hydrogel with quaternary ammonium and carboxyl groups [J].
Cao, LQ ;
Xu, SM ;
Feng, S ;
Wang, JD .
JOURNAL OF APPLIED POLYMER SCIENCE, 2005, 96 (06) :2392-2398
[7]   Dependency of polyelectrolyte complex stoichiometry on the order of addition. 1. Effect of salt concentration during streaming current titrations with strong poly-acid and polybase [J].
Chen, JH ;
Heitmann, JA ;
Hubbe, MA .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2003, 223 (1-3) :215-230
[8]   Polyelectrolyte Molecular Weight and Salt Effects on the Phase Behavior and Coacervation of Aqueous Solutions of Poly(acrylic acid) Sodium Salt and Poly(allylamine) Hydrochloride [J].
Chollakup, Rungsima ;
Beck, John B. ;
Dirnberger, Klaus ;
Tirrell, Matthew ;
Eisenbach, Claus D. .
MACROMOLECULES, 2013, 46 (06) :2376-2390
[9]   Phase Behavior and Coacervation of Aqueous Poly(acrylic acid)-Poly(allylamine) Solutions [J].
Chollakup, Rungsima ;
Smitthipong, Wirasak ;
Eisenbach, Claus D. ;
Tirrell, Matthew .
MACROMOLECULES, 2010, 43 (05) :2518-2528
[10]  
Clark SL, 1998, ADV MATER, V10, P1515, DOI 10.1002/(SICI)1521-4095(199812)10:18<1515::AID-ADMA1515>3.0.CO