Different physical structures of solutions for two related Zakharov-Kuznetsov equations

被引:8
作者
Lai, Shaoyong [1 ]
Yin, Jun [1 ]
Wu, Yonghong [2 ]
机构
[1] SW Univ Finance & Econ, Dept Appl Math, Chengdu 610074, Peoples R China
[2] Curtin Univ Technol, Dept Math & Stat, Perth, WA 6845, Australia
关键词
Auxiliary equation method; Explicit solutions; Nonlinear equations; Variable coefficients;
D O I
10.1016/j.physleta.2008.08.071
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The auxiliary differential equation approach and the symbolic computation system Maple are employed to investigate two types of related Zakharov-Kuznetsov equations with variable coefficients. The exact solutions to the equations are constructed analytically under certain circumstances. It is shown that the variable coefficients of the derivative terms of the equations result in their semi-travelling wave solutions. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:6461 / 6468
页数:8
相关论文
共 13 条
[1]   Application of the (G′/G)-expansion method for nonlinear evolution equations [J].
Bekir, Ahmet .
PHYSICS LETTERS A, 2008, 372 (19) :3400-3406
[2]  
EIWAKIL SA, 2007, PHYS LETT A, V369, P62
[3]   SOLITARY WAVE SOLUTIONS OF NONLINEAR EVOLUTION AND WAVE-EQUATIONS USING A DIRECT METHOD AND MACSYMA [J].
HEREMAN, W ;
TAKAOKA, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (21) :4805-4822
[4]   Growth rate of transverse instabilities of solitary pulse solutions to a family of modified Zakharov-Kuznetsov equations [J].
Hongsit, Nongluk ;
Allen, Michael A. ;
Rowlands, George .
PHYSICS LETTERS A, 2008, 372 (14) :2420-2422
[5]  
JEFFREY A, 1963, TABLES INTEGRALS SER
[6]  
Khaldoun B., 2008, J COMPUT APPL MATH, V216, P157
[7]  
MUSTAFA I, 2007, CHAOS SOLITON FRACT, V33, P1783
[8]   THE PAINLEVE ANALYSIS OF THE ZAKHAROV-KUZNETSOV EQUATION [J].
SHIVAMOGGI, BK .
PHYSICA SCRIPTA, 1990, 42 (06) :641-642
[9]   Solitary wave solutions for modified forms of Degasperis-Procesi and Camassa-Holm equations [J].
Wazwaz, AM .
PHYSICS LETTERS A, 2006, 352 (06) :500-504
[10]   Compactons, solitons and periodic solutions for some forms of nonlinear Klein-Gordon equations [J].
Wazwaz, AM .
CHAOS SOLITONS & FRACTALS, 2006, 28 (04) :1005-1013