Fabrication of electrochemically reduced graphene oxide/cobalt oxide composite for charge storage electrodes

被引:15
作者
Garcia-Gomez, A. [1 ]
Duarte, R. G. [1 ,2 ]
Eugenio, S. [1 ]
Silva, T. M. [1 ,3 ]
Carmezim, M. J. [1 ,4 ]
Montemor, M. F. [1 ]
机构
[1] Univ Lisbon, Inst Super Tecn, CQE, P-1699 Lisbon, Portugal
[2] Inst Politecn Setubal, ESTBarreiro, Setubal, Portugal
[3] Inst Politecn Lisboa, ISEL, GI MOSM, ADEM, Lisbon, Portugal
[4] Inst Politecn Setubal, ESTSetubal, Setubal, Portugal
关键词
Electrochemically-reduced graphene oxide; Cobalt oxides; Electrodeposition; Charge storage; PERFORMANCE; SUPERCAPACITOR; REDUCTION; FOAM; DEPOSITION; NANOSHEETS; HYDROXIDE; SHEETS; FILMS;
D O I
10.1016/j.jelechem.2015.07.053
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Electrochemically-reduced graphene oxide (Er-GO) and cobalt oxides (CoOx) were co-electrodeposited by cyclic voltammetry, from an electrolyte containing graphene oxide and cobalt nitrate, directly onto a stainless steel substrate to produce composite electrodes presenting high charge storage capacity. The electrochemical response of the composite films was optimized by studying the parameters applied during the electrodeposition process, namely the number of cycles, scan rate and ratio between GO/Co(NO3)(2) concentrations in the electrolyte. It is shown that, if the appropriate conditions are selected, it is possible to produced binder-free composite electrodes with improved electrochemical properties using a low-cost, facile and scalable technique. The optimized Er-GO/CoOx developed in this work exhibits a specific capacitance of 608 F g(-1) at a current density of 1 A g(-1) and increased reversibility when compared to single CoOx. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:151 / 157
页数:7
相关论文
共 44 条
[1]   Characterization of graphene oxide reduced through chemical and biological processes [J].
Boutchich, M. ;
Jaffre, A. ;
Alamarguy, D. ;
Alvarez, J. ;
Barras, A. ;
Tanizawa, Y. ;
Tero, R. ;
Okada, H. ;
Thu, T. V. ;
Kleider, J. P. ;
Sandhu, A. .
IRAGO CONFERENCE 2012, 2013, 433
[2]   Graphene and nanostructured MnO2 composite electrodes for supercapacitors [J].
Cheng, Qian ;
Tang, Jie ;
Ma, Jun ;
Zhang, Han ;
Shinya, Norio ;
Qin, Lu-Chang .
CARBON, 2011, 49 (09) :2917-2925
[3]  
Conway B.E., 1999, ELECTROCHEM SUPERCAP, DOI DOI 10.1007/978-1-4757-3058-6
[4]   Raman spectroscopy for the study of reduction mechanisms and optimization of conductivity in graphene oxide thin films [J].
Diez-Betriu, Xavier ;
Alvarez-Garcia, Susana ;
Botas, Cristina ;
Alvarez, Patricia ;
Sanchez-Marcos, Jorge ;
Prieto, Carlos ;
Menendez, Rosa ;
de Andres, Alicia .
JOURNAL OF MATERIALS CHEMISTRY C, 2013, 1 (41) :6905-6912
[5]   One-step electrochemical synthesis of three-dimensional graphene foam loaded nickel-cobalt hydroxides nanoflakes and its electrochemical properties [J].
Dong, Shuang ;
Dao, Anh Quang ;
Zheng, Bijuan ;
Tan, Zhengyan ;
Fu, Chaoyang ;
Liu, Hongfang ;
Xiao, Fei .
ELECTROCHIMICA ACTA, 2015, 152 :195-201
[6]   3D Graphene-Cobalt Oxide Electrode for High-Performance Supercapacitor and Enzymeless Glucose Detection [J].
Dong, Xiao-Chen ;
Xu, Hang ;
Wang, Xue-Wan ;
Huang, Yin-Xi ;
Chan-Park, Mary B. ;
Zhang, Hua ;
Wang, Lian-Hui ;
Huang, Wei ;
Chen, Peng .
ACS NANO, 2012, 6 (04) :3206-3213
[7]   Carbon materials for the electrochemical storage of energy in capacitors [J].
Frackowiak, E ;
Béguin, F .
CARBON, 2001, 39 (06) :937-950
[8]   Seed-mediated synthesis and the photo-degradation activity of ZnO-graphene hybrids excluding the influence of dye adsorption [J].
Fu, Dongying ;
Han, Gaoyi ;
Yang, Feifei ;
Zhang, Tianwen ;
Chang, Yunzhen ;
Liu, Feifei .
APPLIED SURFACE SCIENCE, 2013, 283 :654-659
[9]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[10]   Graphene: Status and Prospects [J].
Geim, A. K. .
SCIENCE, 2009, 324 (5934) :1530-1534