Evolution of Kelvin-Helmholtz activity on the dusk flank magnetopause

被引:90
作者
Foullon, C. [1 ]
Farrugia, C. J. [2 ,3 ]
Fazakerley, A. N. [1 ]
Owen, C. J. [1 ]
Gratton, F. T. [4 ]
Torbert, R. B. [2 ,3 ]
机构
[1] Univ Coll London, Mullard Space Sci Lab, Dorking RH5 6NT, Surrey, England
[2] Univ New Hampshire, Ctr Space Sci, Durham, NH 03824 USA
[3] Univ New Hampshire, Dept Phys, Durham, NH 03824 USA
[4] Univ Buenos Aires, Inst Fis Plasma, CONICET, RA-1428 Buenos Aires, DF, Argentina
基金
英国科学技术设施理事会;
关键词
D O I
10.1029/2008JA013175
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Our purpose is to characterize the evolution of the magnetopause Kelvin-Helmholtz (KH) wave activity with changes in thickness of the adjacent boundary layer, geomagnetic latitude and interplanetary magnetic field (IMF) orientation. As the IMF turns northward, wave activity may be generated at the dayside before propagating down the tail, where the boundary layer is expected to support longer wavelengths. We use two-point observations on the dusk magnetopause at low latitudes, from Geotail on the dayside and Cluster tailward of the dusk terminator. We quantify the wavelength, power, wavefront steepness and propagation direction at Cluster. An estimate of the thickness of the low-latitude boundary layer (LLBL) is obtained by correlating normal distances to the magnetopause, derived from two empirical solar-wind-driven models, with a systematic relationship (the "transition parameter'') found between the electron number density and temperature; the correlation factor is used to infer the temporal evolution of the thickness of the locally sampled layer. We find that wavelengths are controlled by the IMF clock angle, as expected when generated by the KH mechanism at the dayside, although amplitudes, wavefront steepness and propagation directions are more closely correlated with the layer thickness. A survey of parameter space provides evidence of the contribution of the KH mechanism to the widening of the electron LLBL.
引用
收藏
页数:22
相关论文
共 66 条
[1]   The structure of the magnetospheric boundary layers and the magnetospheric turbulence [J].
Antonova, EE .
PLANETARY AND SPACE SCIENCE, 2005, 53 (1-3) :161-168
[2]   A 154 DAY PERIODICITY IN THE OCCURRENCE RATE OF PROTON FLARES [J].
BAI, T ;
CLIVER, EW .
ASTROPHYSICAL JOURNAL, 1990, 363 (01) :299-309
[3]   The Cluster Magnetic Field Investigation:: overview of in-flight performance and initial results [J].
Balogh, A ;
Carr, CM ;
Acuña, MH ;
Dunlop, MW ;
Beek, TJ ;
Brown, P ;
Fornacon, KH ;
Georgescu, E ;
Glassmeier, KH ;
Harris, J ;
Musmann, G ;
Oddy, T ;
Schwingenschuh, K .
ANNALES GEOPHYSICAE, 2001, 19 (10-12) :1207-1217
[4]   ADVANCES IN MAGNETOPAUSE KELVIN-HELMHOLTZ INSTABILITY STUDIES [J].
BELMONT, G ;
CHANTEUR, G .
PHYSICA SCRIPTA, 1989, 40 (01) :124-128
[5]   On the formation of the high-altitude stagnant cusp: Cluster observations [J].
Bogdanova, YV ;
Marchaudon, A ;
Owen, CJ ;
Dunlop, MW ;
Frey, HU ;
Wild, JA ;
Fazakerley, AN ;
Klecker, B ;
Davies, JA ;
Milan, SE .
GEOPHYSICAL RESEARCH LETTERS, 2005, 32 (12) :1-5
[6]  
Chandrasekhar S., 1961, INT SERIES MONOGRAPH
[7]   MAGNETIC-FIELD DRAPING AGAINST THE DAYSIDE MAGNETOPAUSE [J].
CROOKER, NU ;
LUHMANN, JG ;
RUSSELL, CT ;
SMITH, EJ ;
SPREITER, JR ;
STAHARA, SS .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1985, 90 (NA4) :3505-3510
[8]   The Earth's magnetopause: Reconstruction of motion and structure [J].
De Keyser, Johan .
SPACE SCIENCE REVIEWS, 2005, 121 (1-4) :225-235
[9]   INTERPLANETARY MAGNETIC FIELD AND AURORAL ZONES [J].
DUNGEY, JW .
PHYSICAL REVIEW LETTERS, 1961, 6 (02) :47-&
[10]   MAGNETOSPHERIC BOUNDARY-LAYER - SITE OF PLASMA, MOMENTUM AND ENERGY-TRANSFER FROM MAGNETOSHEATH INTO MAGNETOSPHERE [J].
EASTMAN, TE ;
HONES, EW ;
BAME, SJ ;
ASBRIDGE, JR .
GEOPHYSICAL RESEARCH LETTERS, 1976, 3 (11) :685-688