Riemann-Hilbert approach to multi-time processes: The Airy and the Pearcey cases

被引:17
作者
Bertola, M. [1 ]
Cafasso, M.
机构
[1] Univ Montreal, Ctr Rech Math, Succ Ctr Ville, Montreal, PQ H3C 3J7, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Random point processes; Riemann-Hilbert problems; Integrable kernels; GAUSSIAN RANDOM MATRICES; LARGE-N LIMIT; EXTERNAL SOURCE; DYSON;
D O I
10.1016/j.physd.2012.01.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that matrix Fredholm determinants related to multi-time processes can be expressed in terms of determinants of integrable kernels a la Its-Izergin-Korepin-Slaynov (IIKS) and hence related to suitable Riemann-Hilbert problems, thus extending the known results for the single-time case. We focus on the Airy and Pearcey processes. As an example of applications we re-deduce a third order POE, found by Adler and van Moerbeke, for the two-time Airy process. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:2237 / 2245
页数:9
相关论文
共 20 条
[1]   PDEs for the joint distributions of the Dyson, Airy and Sine processes [J].
Adler, M ;
van Moerbeke, P .
ANNALS OF PROBABILITY, 2005, 33 (04) :1326-1361
[2]  
[Anonymous], ARXIV11013997
[3]  
[Anonymous], USPEKHI MATH NAUK, DOI 10.4213/rm321
[4]   Large n limit of Gaussian random matrices with external source, Part II [J].
Aptekarev, AI ;
Bleher, PM ;
Kuijlaars, ABJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 259 (02) :367-389
[5]   The Transition between the Gap Probabilities from the Pearcey to the Airy Process-a Riemann-Hilbert Approach [J].
Bertola, M. ;
Cafasso, M. .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2012, 2012 (07) :1519-1568
[6]   The Dependence on the Monodromy Data of the Isomonodromic Tau Function [J].
Bertola, M. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 294 (02) :539-579
[7]   Large n limit of Gaussian random matrices with external source, part I [J].
Bleher, P ;
Kuijlaars, ABJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 252 (1-3) :43-76
[8]   Large n limit of Gaussian random matrices with external source, part III:: Double scaling limit [J].
Bleher, Pavel M. ;
Kuijlaars, Arno B. J. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 270 (02) :481-517
[9]  
Bleher PM, 2004, INT MATH RES NOTICES, V2004, P109
[10]   A BROWNIAN-MOTION FOR EIGENVALUES OF A RANDOM MATRIX [J].
DYSON, FJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1962, 3 (06) :1191-+