Liquid-Phase Speed of Sound and Vapor-Phase Density of Difluoromethane

被引:4
作者
Rowane, Aaron J. [1 ]
Rasmussen, Elizabeth G. [1 ]
McLinden, Mark O. [1 ]
机构
[1] Natl Inst Stand & Technol, Appl Chem & Mat Div, Boulder, CO 80305 USA
关键词
THERMODYNAMIC PROPERTIES; TEMPERATURE; PRESSURES; STATE; COMPRESSIBILITY; STANDARD; EQUATION; RANGES; SYSTEM;
D O I
10.1021/acs.jced.2c00441
中图分类号
O414.1 [热力学];
学科分类号
摘要
Difluoromethane (HFC-32, DFM), with a global warming potential (GWP) of 677, is of interest as a pure refrigerant and as a component in low-GWP refrigerant mixtures. Additionally, difluoromethane has recently been identified as a safe, liquefied-gas electrolyte material in batteries. Using state-of-the-art instruments for measurements, this paper presents new liquid-phase speed of sound and vapor-phase density data for. Two hundred and nine liquid-phase speed of sound values were measured using a dual-path pulse-echo instrument at temperatures from 230 to 345 K and pressures from 2.1 to 70 MPa. Accounting for all sources of uncertainty, the relative expanded combined uncertainty (k = 2) in the speed of sound ranged from 0.035 to 0.17%. One hundred and thirty-eight vapor-phase density values were measured using a two-sinker densimeter at temperatures from 240 to 340 K and pressures from 0.1 to 1.61 MPa with an uncertainty of 0.011 to 0.12%. These experimental data will be valuable in the ongoing development of a new fundamental thermodynamic equation of state for.
引用
收藏
页码:3022 / 3032
页数:11
相关论文
共 46 条
[1]  
ANSI/ASHRAE, 2019, ANSI/ASHRAE Addendum f to ANSI/ASHRAE Standard 90.4-2016, P18
[2]   A rational Helmholtz fundamental equation of state for difluoromethane with an intermolecular potential background [J].
Astina, IM ;
Sato, H .
INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2003, 24 (04) :963-990
[3]  
BCC Research, 2020, REFR GLOB MARK, P261
[4]   Mixture Models for Refrigerants R-1234yf/134a, R-1234yf/1234ze(E), and R-134a/1234ze(E) and Interim Models for R-125/1234yf, R-1234ze(E)/227ea, and R-1234yf/152a [J].
Bell, Ian H. .
JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 2022, 51 (01)
[5]  
Bouchot C., 1997, INT ELECT J PHYS CHE, V3, P1
[6]  
Bruno TJ, 2019, Thermophysical properties of polyol ester lubricants
[7]   Improvement of Quality in Publication of Experimental Thermophysical Property Data: Challenges, Assessment Tools, Global Implementation, and Online Support [J].
Chirico, Robert D. ;
Frenkel, Michael ;
Magee, Joseph W. ;
Diky, Vladimir ;
Muzny, Chris D. ;
Kazakov, Andrei F. ;
Kroenlein, Kenneth ;
Abdulagatov, Ilmutdin ;
Hardin, Gary R. ;
Acree, William E., Jr. ;
Brenneke, Joan F. ;
Brown, Paul L. ;
Cummings, Peter T. ;
de Loos, Theo W. ;
Friend, Daniel G. ;
Goodwin, Anthony R. H. ;
Hansen, Lee D. ;
Haynes, William M. ;
Koga, Nobuyoshi ;
Mandelis, Andreas ;
Marsh, Kenneth N. ;
Mathias, Paul M. ;
McCabe, Clare ;
O'Connell, John P. ;
Padua, Agilio ;
Rives, Vicente ;
Schick, Christoph ;
Trusler, J. P. Martin ;
Vyazovkin, Sergey ;
Weir, Ron D. ;
Wu, Jiangtao .
JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2013, 58 (10) :2699-2716
[8]  
de Vries B., 1996, THERMODYNAMISCHE EIG
[9]   THERMODYNAMIC PROPERTIES OF DIFLUOROMETHANE [J].
DEFIBAUGH, DR ;
MORRISON, G ;
WEBER, LA .
JOURNAL OF CHEMICAL AND ENGINEERING DATA, 1994, 39 (02) :333-340
[10]   Representation and Validation of Liquid Densities for Pure Compounds and Mixtures [J].
Diky, Vladimir ;
O'Connell, John P. ;
Abildskov, Jens ;
Kroenlein, Kenneth ;
Frenkel, Michael .
JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2015, 60 (12) :3545-3553