Parameter estimation for multivariate diffusion systems

被引:6
|
作者
Varughese, Melvin M. [1 ]
机构
[1] Univ Cape Town, Dept Stat Sci, ZA-7707 Cape Town, South Africa
基金
新加坡国家研究基金会;
关键词
Diffusion process; Fokker-Planck equation; Cumulant truncation procedure; Saddlepoint approximation; Markov Chain Monte Carlo; MAXIMUM-LIKELIHOOD-ESTIMATION; STOCHASTIC DIFFERENTIAL-EQUATIONS; SADDLEPOINT APPROXIMATIONS; MARKOV-PROCESSES; TIME; EXPANSIONS; INFERENCE; MODELS;
D O I
10.1016/j.csda.2012.07.010
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Diffusion processes are widely used for modelling real-world phenomena. Except for select cases however, analytical expressions do not exist for a diffusion process' transitional probabilities. It is proposed that the cumulant truncation procedure can be applied to predict the evolution of the cumulants of the system. These predictions may be subsequently used within the saddlepoint procedure to approximate the transitional probabilities. An approximation to the likelihood of the diffusion system is then easily derived. The method is applicable for a wide range of diffusion systems - including multivariate, irreducible diffusion systems that existing estimation schemes struggle with. Not only is the accuracy of the saddlepoint comparable with the Hermite expansion - a popular approximation to a diffusion system's transitional density - it also appears to be less susceptible to increasing lags between successive samplings of the diffusion process. Furthermore, the saddlepoint is more stable in regions of the parameter space that are far from the maximum likelihood estimates. Hence, the saddlepoint method can be naturally incorporated within a Markov Chain Monte Carlo (MCMC) routine in order to provide reliable estimates and credibility intervals of the diffusion model's parameters. The method is applied to fit the Heston model to daily observations of the S&P 500 and VIX indices from December 2009 to November 2010. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:417 / 428
页数:12
相关论文
共 50 条
  • [31] Diffusion copulas: Identification and estimation
    Bu, Ruijun
    Hadri, Kaddour
    Kristensen, Dennis
    JOURNAL OF ECONOMETRICS, 2021, 221 (02) : 616 - 643
  • [32] Multivariate Gamma Regression: Parameter Estimation, Hypothesis Testing, and Its Application
    Rahayu, Anita
    Purhadi
    Sutikno
    Prastyo, Dedy Dwi
    SYMMETRY-BASEL, 2020, 12 (05):
  • [33] Computational Intelligence for Parameter Estimation of Biochemical Systems
    Nobile, Marco S.
    Tangherloni, Andrea
    Rundo, Leonardo
    Spolaor, Simone
    Besozzi, Daniela
    Mauri, Giancarlo
    Cazzaniga, Paolo
    2018 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2018, : 925 - 932
  • [34] Parameter estimation for Jump Markov Linear Systems
    Balenzuela, Mark P.
    Wills, Adrian G.
    Renton, Christopher
    Ninness, Brett
    AUTOMATICA, 2022, 135
  • [35] PARAMETER ESTIMATION FOR A CLASS OF DIFFUSION PROCESS FROM DISCRETE OBSERVATION
    Wei, Chao
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2018, (39): : 596 - 607
  • [36] Parameter estimation by contrast minimization for noisy observations of a diffusion process
    Favetto, Benjamin
    STATISTICS, 2014, 48 (06) : 1344 - 1370
  • [37] Hybrid differential evolution with geometric mean mutation in parameter estimation of bioreaction systems with large parameter search space
    Liu, Pang-Kai
    Wang, Feng-Sheng
    COMPUTERS & CHEMICAL ENGINEERING, 2009, 33 (11) : 1851 - 1860
  • [38] Parameter Estimation and Hypothesis Testing of Geographically Weighted Multivariate Generalized Poisson Regression
    Berliana, Sarni Maniar
    Purhadi
    Sutikno
    Rahayu, Santi Puteri
    MATHEMATICS, 2020, 8 (09)
  • [39] Sequential Maximal Updated Density Parameter Estimation for Dynamical Systems With Parameter Drift
    del-Castillo-Negrete, Carlos
    Spence, Rylan
    Butler, Troy
    Dawson, Clint
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2025, 126 (03)
  • [40] ROBUST ESTIMATION OF MULTIVARIATE JUMP-DIFFUSION PROCESSES VIA DYNAMIC PROGRAMMING
    Torzhkov, Andrey
    Sharma, Puneet
    Chakraborty, Amit
    PROCEEDINGS OF THE 2010 WINTER SIMULATION CONFERENCE, 2010, : 1123 - 1132