Spatio-Temporal Seismicity Prediction in Chile Using a Multi-Column ConvLSTM

被引:7
|
作者
Gonzalez Fuentes, Alex [1 ]
Nicolis, Orietta [1 ,2 ]
Peralta, Billy [1 ,3 ]
Chiodi, Marcello [4 ]
机构
[1] Univ Andres Bello, Fac Ingn, Vina Del Mar 2520000, Chile
[2] Res Ctr Integrated Disaster Risk Management CIGID, Santiago 7810000, Chile
[3] Univ Andres Bello, Santiago 7500000, Chile
[4] Univ Palermo, Dipartimento Sci Econ Aziendali & Stat, I-90128 Palermo, Italy
来源
IEEE ACCESS | 2022年 / 10卷
关键词
Deep learning; ETAS model; prediction; seismic events; CONVOLUTIONAL NEURAL-NETWORK; EARTHQUAKES; MODELS;
D O I
10.1109/ACCESS.2022.3210554
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
One way to characterize the seismicity in a given zone is through the study of the conditional intensity function of the ETAS model (Epidemic Type Aftershock Sequence) which represents the average number of seismic events greater than given magnitude. Being Chile one of the most seismic country in the world, it is very important to predict where the seismic events will happen with more frequency. In this work we propose a parallel neural network based on the Convolutional Network (CNN) and the Long Short Term Memory (LSTM) network, called Multi-Culumn ConvLSTM, using the accumulated crustal velocity and the intensity data as input for predicting the daily mean number of seismic events in Chile with magnitude greater than a given value. For the application, the central zone of Chile between the regions of Coquimbo and Araucania, in the period from 2010 to 2017 was considered. At the spatial level, each region was partitioned considering a 20 x 20 dimension grid, while at the temporal level, input data from the last 20 days were used to predict the mean number of seismic events for the following day. The experiments showed that the Multi-column ConvLSTM network obtained the best results in the test set with an average coefficient of determination of 0.81.
引用
收藏
页码:107402 / 107415
页数:14
相关论文
共 50 条
  • [1] Spatio-Temporal Seismicity Prediction in Chile Using a Multi-Column ConvLSTM
    Fuentes, Alex Gonzalez
    Nicolis, Orietta
    Peralta, Billy
    Chiodi, Marcello
    IEEE Access, 2022, 10 : 107402 - 107415
  • [2] DeepSTCL: A Deep Spatio-temporal ConvLSTM for Travel Demand Prediction
    Wang, Dongjie
    Yang, Yan
    Ning, Shangming
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [3] Spatio-temporal prediction of regional land subsidence via ConvLSTM
    LENG Jing
    GAO Mingliang
    GONG Huili
    CHEN Beibei
    ZHOU Chaofan
    SHI Min
    CHEN Zheng
    LI Xiang
    Journal of Geographical Sciences, 2023, 33 (10) : 2131 - 2156
  • [4] Spatio-temporal prediction of regional land subsidence via ConvLSTM
    Leng, Jing
    Gao, Mingliang
    Gong, Huili
    Chen, Beibei
    Zhou, Chaofan
    Shi, Min
    Chen, Zheng
    Li, Xiang
    JOURNAL OF GEOGRAPHICAL SCIENCES, 2023, 33 (10) : 2131 - 2156
  • [5] Spatio-temporal prediction of regional land subsidence via ConvLSTM
    Jing Leng
    Mingliang Gao
    Huili Gong
    Beibei Chen
    Chaofan Zhou
    Min Shi
    Zheng Chen
    Xiang Li
    Journal of Geographical Sciences, 2023, 33 : 2131 - 2156
  • [6] Decomposing spatio-temporal seismicity patterns
    Goltz, C.
    NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2001, 1 (1-2) : 83 - 92
  • [7] ConvLSTM coordinated longitudinal transformer under spatio-temporal features for tumor growth prediction
    Ma, Manfu
    Zhang, Xiaoming
    Li, Yong
    Wang, Xia
    Zhang, Ruigen
    Wang, Yang
    Sun, Penghui
    Wang, Xuegang
    Sun, Xuan
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 164
  • [8] Spatio-Temporal Wildfire Prediction Using Multi-Modal Data
    Xu, Chen
    Xie, Yao
    Vazquez, Daniel A. Zuniga
    Yao, Rui
    Qiu, Feng
    IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, 2023, 4 : 302 - 313
  • [9] Spatio-Temporal Prediction of Suspect Location by Spatio-Temporal Semantics
    Duan L.
    Hu T.
    Zhu X.
    Ye X.
    Wang S.
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2019, 44 (05): : 765 - 770
  • [10] Spatio-temporal Prediction of Air Quality Using Spatio-temporal Clustering and Hierarchical Bayesian Model
    Wang, Feiyun
    Hu, Yao
    Qin, Yutao
    CHIANG MAI JOURNAL OF SCIENCE, 2024, 51 (05):