Accelerating Proximal Markov Chain Monte Carlo by Using an Explicit Stabilized Method

被引:23
作者
Pereyra, Marcelo [1 ,2 ]
Mieles, Luis Vargas [1 ,2 ,3 ]
Zygalakis, Konstantinos C. [2 ,3 ]
机构
[1] Heriot Watt Univ, Sch Math & Comp Sci, Edinburgh EH14 4AS, Midlothian, Scotland
[2] Bayes Ctr, Maxwell Inst Math Sci, Edinburgh EH8 9BT, Midlothian, Scotland
[3] Univ Edinburgh, Sch Math, Edinburgh EH9 3FD, Midlothian, Scotland
关键词
mathematical imaging; inverse problems; Bayesian inference; Markov chain Monte Carlo methods; proximal algorithms; MEAN-SQUARE; LANGEVIN; REGULARIZATION; OPTIMIZATION; ALGORITHM; NOISE; STIFF;
D O I
10.1137/19M1283719
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a highly efficient proximal Markov chain Monte Carlo methodology to perform Bayesian computation in imaging problems. Similarly to previous proximal Monte Carlo approaches, the proposed method is derived from an approximation of the Langevin diffusion. However, instead of the conventional Euler-Maruyama approximation that underpins existing proximal Monte Carlo methods, here we use a state-of-the-art orthogonal Runge-Kutta-Chebyshev stochastic approximation [A. Abdulle, I. Aimuslimani, and G. Vilmart, SIAM/ASA J. Uncertain. Quantif., 6 (2018), pp. 937-964] that combines several gradient evaluations to significantly accelerate its convergence speed, similarly to accelerated gradient optimization methods. The proposed methodology is demonstrated via a range of numerical experiments, including non-blind image deconvolution, hyperspectral unmixing, and tomographic reconstruction, with total-variation and l(1)-type priors. Comparisons with Euler-type proximal Monte Carlo methods confirm that the Markov chains generated with our method exhibit significantly faster convergence speeds, achieve larger effective sample sizes, and produce lower mean-square estimation errors at equal computational budget.
引用
收藏
页码:905 / 935
页数:31
相关论文
共 52 条
  • [31] Kaipio J., 2006, APPL MATH SCI, V160
  • [32] Spectral unmixing
    Keshava, N
    Mustard, JF
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2002, 19 (01) : 44 - 57
  • [33] Kloeden P. E., 1992, Applications of mathematics, V23
  • [34] Enhancing Compressed Sensing 4D Photoacoustic Tomography by Simultaneous Motion Estimation
    Lucka, Felix
    Nam Huynh
    Betcke, Marta
    Zhang, Edward
    Beards, Paul
    Cox, Ben
    Arridge, Simon
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2018, 11 (04): : 2224 - 2253
  • [35] Marnissi Y, 2014, EUR SIGNAL PR CONF, P1332
  • [36] Marnissi Y., 2016, P IEEE STAT SIGN PRO, P1
  • [37] Maximum-a-Posteriori Estimation with Bayesian Confidence Regions
    Pereyra, Marcelo
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2017, 10 (01): : 285 - 302
  • [38] Proximal Markov chain Monte Carlo algorithms
    Pereyra, Marcelo
    [J]. STATISTICS AND COMPUTING, 2016, 26 (04) : 745 - 760
  • [39] A Survey of Stochastic Simulation and Optimization Methods in Signal Processing
    Pereyra, Marcelo
    Schniter, Philip
    Chouzenoux, Emilie
    Pesquet, Jean-Christophe
    Tourneret, Jean-Yves
    Hero, Alfred O., III
    McLaughlin, Steve
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2016, 10 (02) : 224 - 241
  • [40] Scalable Bayesian Uncertainty Quantification in Imaging Inverse Problems via Convex Optimization
    Repetti, Audrey
    Pereyra, Marcelo
    Wiaux, Yves
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2019, 12 (01): : 87 - 118