Additive functional inequalities in Banach spaces

被引:5
作者
Lu, Gang [1 ]
Park, Choonkil [2 ]
机构
[1] ShenYang Univ Technol, Sch Sci, Dept Math, Shenyang 110178, Peoples R China
[2] Hanyang Univ, Res Inst Nat Sci, Dept Math, Seoul 133791, South Korea
关键词
Hyers-Ulam stability; additive functional inequality; additive mapping; APPROXIMATELY LINEAR MAPPINGS; STABILITY; HOMOMORPHISMS; ALGEBRAS;
D O I
10.1186/1029-242X-2012-294
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove the Hyers-Ulam stability of the following function inequalities: parallel to f(x) + f(y) + f(z)parallel to <= parallel to Kf(x+y+z/K)parallel to (0 < vertical bar K vertical bar < 3), parallel to f(x) + f(y) + Kf(z) <= parallel to Kf(x+y/K+z)parallel to (0 < K not equal 2) in Banach spaces. MSC: Primary 39B62; 39B52; 46B25
引用
收藏
页数:10
相关论文
共 14 条
[1]  
[Anonymous], J INEQUAL APPL
[2]   Functional inequalities in non-Archimedean Banach spaces [J].
Cho, Yeol Je ;
Park, Choonkil ;
Saadati, Reza .
APPLIED MATHEMATICS LETTERS, 2010, 23 (10) :1238-1242
[3]  
Gajda Z., 1991, Internat. J. Math. Math. Sci., V14, P431, DOI [10.1155/S016117129100056X, DOI 10.1155/S016117129100056X]
[4]   On the stability of the linear functional equation [J].
Hyers, DH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1941, 27 :222-224
[5]  
Jung S.M., 2001, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis
[6]  
Lu G., PREPRINT
[7]   Hyers-Ulam stability of additive set-valued functional equations [J].
Lu, Gang ;
Park, Choonkil .
APPLIED MATHEMATICS LETTERS, 2011, 24 (08) :1312-1316
[8]   Homomorphisms between Poisson JC*-algebras [J].
Park, CG .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2005, 36 (01) :79-97
[9]   Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach algebras [J].
Park, Choonkil .
BULLETIN DES SCIENCES MATHEMATIQUES, 2008, 132 (02) :87-96
[10]  
Rassias J.M., 1985, Discuss. Math, V7, P193