A polynomial algorithm determining cyclic vertex connectivity of k-regular graphs with fixed k

被引:9
|
作者
Liang, Jun [1 ,2 ]
Lou, Dingjun [2 ]
机构
[1] South China Normal Univ, Network Ctr, Guangzhou 510631, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510006, Guangdong, Peoples R China
关键词
Cyclic vertex connectivity; k-Regular graph; Maximum flow; Time complexity; EDGE-CONNECTIVITY;
D O I
10.1007/s10878-018-0332-4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
For a connected graph G, a set S of vertices is a cyclic vertex cutset if G - S is not connected and at least two components of G - S contain a cycle respectively. The cyclic vertex connectivity C kappa (G) is the cardinality of a minimum cyclic vertex cutset. In this paper, for a k-regular graph G with fixed k value, we give a polynomial time algorithm to determine oc(G) and its time complexity is bounded by O (v(15/2)).
引用
收藏
页码:1000 / 1010
页数:11
相关论文
共 50 条
  • [1] A polynomial algorithm determining cyclic vertex connectivity of k-regular graphs with fixed k
    Jun Liang
    Dingjun Lou
    Journal of Combinatorial Optimization, 2019, 37 : 1000 - 1010
  • [2] A polynomial algorithm determining cyclic vertex connectivity of 4-regular graphs
    Jun Liang
    Dingjun Lou
    Zongrong Qin
    Qinglin Yu
    Journal of Combinatorial Optimization, 2019, 38 : 589 - 607
  • [3] A polynomial algorithm determining cyclic vertex connectivity of 4-regular graphs
    Liang, Jun
    Lou, Dingjun
    Qin, Zongrong
    Yu, Qinglin
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2019, 38 (02) : 589 - 607
  • [4] On k-regular edge connectivity of chemical graphs
    Ediz, Suleyman
    Ciftci, Idris
    MAIN GROUP METAL CHEMISTRY, 2022, 45 (01) : 106 - 110
  • [5] The connected vertex cover problem in k-regular graphs
    Li, Yuchao
    Wang, Wei
    Yang, Zishen
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2019, 38 (02) : 635 - 645
  • [6] Vertex partitions by connected monochromatic k-regular graphs
    Sárközy, GN
    Selkow, SM
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2000, 78 (01) : 115 - 122
  • [7] The connected vertex cover problem in k-regular graphs
    Yuchao Li
    Wei Wang
    Zishen Yang
    Journal of Combinatorial Optimization, 2019, 38 : 635 - 645
  • [8] EMBEDDING K-REGULAR GRAPHS IN K+1-REGULAR GRAPHS
    GARDINER, A
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1983, 28 (DEC): : 393 - 400
  • [9] An Improved Bound for Vertex Partitions by Connected Monochromatic K-Regular Graphs
    Sarkoezy, Gabor N.
    Selkow, Stanley M.
    Song, Fei
    JOURNAL OF GRAPH THEORY, 2013, 73 (02) : 127 - 145
  • [10] A polynomial time algorithm for cyclic vertex connectivity of cubic graphs
    Liang, Jun
    Lou, Dingjun
    Zhang, Zanbo
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2017, 94 (07) : 1501 - 1514