Inverse semigroup shifts over countable alphabets

被引:4
作者
Goncalves, Daniel
Sobottka, Marcelo [1 ]
Starling, Charles [2 ]
机构
[1] Univ Fed Santa Catarina, Dept Math, BR-88040900 Florianopolis, SC, Brazil
[2] Univ Ottawa, Dept Math & Stat, Ottawa, ON K1N 6N5, Canada
关键词
Inverse semigroups; Symbolic dynamics; Shift spaces; Markov shifts; Topological semigroups; Topological dynamics; SLIDING BLOCK-CODES;
D O I
10.1007/s00233-017-9858-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work we characterize shift spaces over infinite countable alphabets that can be endowed with an inverse semigroup operation. We give sufficient conditions under which zero-dimensional inverse semigroups can be recoded as shift spaces whose correspondent inverse semigroup operation is a 1-block operation, that is, it arises from a group operation on the alphabet. Motivated by this, we go on to study block operations on shift spaces and, in the end, we prove our main theorem, which states that Markovian shift spaces, which can be endowed with a 1-block inverse semigroup operation, are conjugate to the product of a full shift with a fractal shift.
引用
收藏
页码:203 / 240
页数:38
相关论文
共 10 条
[1]  
[Anonymous], 1998, World Scientific, DOI DOI 10.1142/3645
[2]  
Clifford A., 1967, MATH SURVEYS MONOGRA, V7
[3]   TWO-SIDED SHIFT SPACES OVER INFINITE ALPHABETS [J].
Goncalves, Daniel ;
Sobottka, Marcelo ;
Starling, Charles .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2017, 103 (03) :357-386
[4]   Sliding block codes between shift spaces over infinite alphabets [J].
Goncalves, Daniel ;
Sobottka, Marcelo ;
Starling, Charles .
MATHEMATISCHE NACHRICHTEN, 2016, 289 (17-18) :2178-2191
[5]  
KITCHENS BP, 1987, ERGOD THEOR DYN SYST, V7, P249
[6]  
LIND D., 1995, An introduction to symbolic dynamics and coding, DOI 10.1017/CBO9780511626302
[7]  
Ott William, 2014, New York Journal of Mathematics. NYJM Monographs, V5
[8]  
Sindhushayana N. T., 1997, IMA Journal of Mathematical Control and Information, V14, P255, DOI 10.1093/imamci/14.3.255
[9]  
Sobottka M, 2007, DISCRETE CONT DYN S, V17, P77
[10]  
Sobottka M, 2017, J CELL AUTOM, V12, P209