Mass transport in CuInSe2 from first principles

被引:27
作者
Oikkonen, L. E. [1 ]
Ganchenkova, M. G. [1 ,2 ]
Seitsonen, A. P. [3 ]
Nieminen, R. M. [1 ]
机构
[1] Aalto Univ, Dept Appl Phys, COMP Ctr Excellence, FI-00076 Espoo, Finland
[2] Natl Res Nucl Univ MEPhI, Dept Mat Sci, Moscow 115409, Russia
[3] Univ Zurich, Inst Phys Chem, CH-8057 Zurich, Switzerland
基金
芬兰科学院;
关键词
TOTAL-ENERGY CALCULATIONS; SELF-DIFFUSION; DOPANT DIFFUSION; POINT-DEFECTS; SELENIUM; GALLIUM; CU;
D O I
10.1063/1.4799064
中图分类号
O59 [应用物理学];
学科分类号
摘要
The wide scatter in experimental results has not allowed drawing solid conclusions on self-diffusion in the chalcopyrite CuInSe2 (CIS). In this work, the defect-assisted mass transport mechanisms operating in CIS are clarified using first-principles calculations. We present how the stoichiometry of the material and temperature affect the dominant diffusion mechanisms. The most mobile species in CIS is shown to be copper, whose migration proceeds either via copper vacancies or interstitials. Both of these mass-mediating agents exist in the material abundantly and face rather low migration barriers (1.09 and 0.20 eV, respectively). Depending on chemical conditions, selenium mass transport relies either solely on selenium dumbbells, which diffuse with a barrier of 0.24 eV, or also on selenium vacancies whose diffusion is hindered by a migration barrier of 2.19 eV. Surprisingly, indium plays no role in long-range mass transport in CIS; instead, indium vacancies and interstitials participate in mechanisms that promote the formation of antisites on the cation sublattice. Our results help to understand how compositional inhomogeneities arise in CIS. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4799064]
引用
收藏
页数:5
相关论文
共 36 条
[1]   TEMPERATURE-DEPENDENT NUCLEAR MAGNETIC-RESONANCE IN CUINS2,CUINSE2,CUINTE2 CHALCOPYRITE-STRUCTURE COMPOUNDS [J].
BECKER, KD ;
WAGNER, S .
PHYSICAL REVIEW B, 1983, 27 (09) :5240-5249
[2]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[3]   Vacancy-assisted diffusion in silicon: A three-temperature-regime model [J].
Caliste, Damien ;
Pochet, Pascal .
PHYSICAL REVIEW LETTERS, 2006, 97 (13)
[4]   Density functional theory calculations of defect energies using supercells [J].
Castleton, C. W. M. ;
Hoglund, A. ;
Mirbt, S. .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2009, 17 (08)
[5]   Managing the supercell approximation for charged defects in semiconductors:: Finite-size scaling, charge correction factors, the band-gap problem, and the ab initio dielectric constant -: art. no. 035215 [J].
Castleton, CWM ;
Höglund, A ;
Mirbt, S .
PHYSICAL REVIEW B, 2006, 73 (03)
[6]   ION MIGRATION IN CHALCOPYRITE SEMICONDUCTORS [J].
DAGAN, G ;
CISZEK, TF ;
CAHEN, D .
JOURNAL OF PHYSICAL CHEMISTRY, 1992, 96 (26) :11009-11017
[7]   Diffusion of Cu, In, and Ga in In2Se3/CuGaSe2/SnO2 thin film photovoltaic structures [J].
Djessas, K ;
Yapi, S ;
Massé, G ;
Ibannain, M ;
Gauffier, JL .
JOURNAL OF APPLIED PHYSICS, 2004, 95 (08) :4111-4116
[8]   POINT-DEFECTS AND DOPANT DIFFUSION IN SILICON [J].
FAHEY, PM ;
GRIFFIN, PB ;
PLUMMER, JD .
REVIEWS OF MODERN PHYSICS, 1989, 61 (02) :289-384
[9]   First-principles calculations of absolute concentrations and self-diffusion constants of vacancies in lithium [J].
Frank, W ;
Breier, U ;
Elsasser, C ;
Fahnle, M .
PHYSICAL REVIEW LETTERS, 1996, 77 (03) :518-521
[10]   Direct evidence for diffusion and electromigration of Cu in CuInSe2 [J].
Gartsman, K ;
Chernyak, L ;
Lyahovitskaya, V ;
Cahen, D ;
Didik, V ;
Kozlovsky, V ;
Malkovich, R ;
Skoryatina, E ;
Usacheva, V .
JOURNAL OF APPLIED PHYSICS, 1997, 82 (09) :4282-4285