Multiplicity of self-similar solutions for a critical equation

被引:18
作者
Furtado, Marcelo F. [1 ]
da Silva, Joao Pablo P. [2 ]
Xavier, Magda S. [3 ]
机构
[1] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
[2] Fed Univ Para, Dept Matemat, BR-66075110 Belem, PA, Brazil
[3] Univ Fed Espirito Santo, Dept Matemat, BR-29075910 Vitoria, ES, Brazil
关键词
Critical problems; Symmetric functionals; Self-similar solutions; CRITICAL SOBOLEV EXPONENTS; ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS;
D O I
10.1016/j.jde.2013.01.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the equation -Delta u-1/2(x.del u) = f(u) + beta vertical bar u vertical bar(2*-2)u, x is an element of R-N, with beta > 0, f superlinear and 2* := 2N/(N-2) for N >= 3. We prove that, for each k is an element of N, there exists beta* = beta* (k) > 0 such that the equation has at least k pairs of solutions provided beta is an element of (0, beta*). In the proof we use variational methods for the (even) functional associated to the equation. (C) 2013 Published by Elsevier Inc.
引用
收藏
页码:2732 / 2743
页数:12
相关论文
共 13 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]   ON SYMMETRICAL SOLUTIONS OF AN ELLIPTIC EQUATION WITH A NONLINEARITY INVOLVING CRITICAL SOBOLEV EXPONENT [J].
BIANCHI, G ;
CHABROWSKI, J ;
SZULKIN, A .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1995, 25 (01) :41-59
[3]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[4]  
Catrina F, 2007, P ROY SOC EDINB A, V137, P1157
[5]  
CHABROWSKI J, 1995, CALC VAR PARTIAL DIF, V3, P493, DOI 10.1007/BF01187898
[6]   VARIATIONAL-PROBLEMS RELATED TO SELF-SIMILAR SOLUTIONS OF THE HEAT-EQUATION [J].
ESCOBEDO, M ;
KAVIAN, O .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1987, 11 (10) :1103-1133
[7]   On a class of nonlinear elliptic equations with fast increasing weight and critical growth [J].
Furtado, Marcelo F. ;
Myiagaki, Olimpio H. ;
da Silva, Joao Pablo P. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2010, 249 (05) :1035-1055
[8]   NONUNIQUENESS FOR A SEMI-LINEAR INITIAL-VALUE PROBLEM [J].
HARAUX, A ;
WEISSLER, FB .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1982, 31 (02) :167-189
[9]  
Lions P-L., 1985, Rev. Mat. Iberoamericana, V1, P145, DOI [DOI 10.4171/RMI/6, 10.4171/rmi/6]
[10]  
Ohya H, 2004, ADV DIFFERENTIAL EQU, V9, P1339