RNA self-assembly contributes to stress granule formation and defining the stress granule transcriptome

被引:354
作者
Van Treeck, Briana [1 ]
Protter, David S. W. [1 ]
Matheny, Tyler [1 ]
Khong, Anthony [1 ,2 ]
Link, Christopher D. [3 ]
Parker, Roy [1 ,2 ]
机构
[1] Univ Colorado, Dept Chem & Biochem, Boulder, CO 80309 USA
[2] Univ Colorado, Howard Hughes Med Inst, Boulder, CO 80309 USA
[3] Univ Colorado, Dept Integrat Physiol, Boulder, CO 80309 USA
基金
美国国家科学基金会;
关键词
RNP granules; dipeptides; RNA self-assembly; stress granules; PRION-LIKE DOMAINS; MESSENGER-RNA; PHASE-SEPARATION; P-BODIES; BINDING PROTEINS; FOCI; REPEATS; TRANSLATION; ACCUMULATION; TRANSITIONS;
D O I
10.1073/pnas.1800038115
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Stress granules are higher order assemblies of nontranslating mRNAs and proteins that form when translation initiation is inhibited. Stress granules are thought to form by protein-protein interactions of RNA-binding proteins. We demonstrate RNA homopolymers or purified cellular RNA forms assemblies in vitro analogous to stress granules. Remarkably, under conditions representative of an intracellular stress response, the mRNAs enriched in assemblies from total yeast RNA largely recapitulate the stress granule transcriptome. We suggest stress granules are formed by a summation of protein-protein and RNA-RNA interactions, with RNA self-assembly likely to contribute to other RNP assemblies wherever there is a high local concentration of RNA. RNA assembly in vitro is also increased by GR and PR dipeptide repeats, which are known to increase stress granule formation in cells. Since GR and PR dipeptides are involved in neurodegenerative diseases, this suggests that perturbations increasing RNA-RNA assembly in cells could lead to disease.
引用
收藏
页码:2734 / 2739
页数:6
相关论文
共 62 条
[1]   Differential expression analysis for sequence count data [J].
Anders, Simon ;
Huber, Wolfgang .
GENOME BIOLOGY, 2010, 11 (10)
[2]   HTSeq-a Python']Python framework to work with high-throughput sequencing data [J].
Anders, Simon ;
Pyl, Paul Theodor ;
Huber, Wolfgang .
BIOINFORMATICS, 2015, 31 (02) :166-169
[3]   RNA granules [J].
Anderson, P ;
Kedersha, N .
JOURNAL OF CELL BIOLOGY, 2006, 172 (06) :803-808
[4]  
ANDERSON P, 2015, BBA-GENE REGUL MECH, V1849, P861, DOI DOI 10.1016/J.BBAGRM.2014.11.009
[5]   Stress granules: The Tao of RNA triage [J].
Anderson, Paul ;
Kedersha, Nancy .
TRENDS IN BIOCHEMICAL SCIENCES, 2008, 33 (03) :141-150
[6]   RNA granules: post-transcriptional and epigenetic modulators of gene expression [J].
Anderson, Paul ;
Kedersha, Nancy .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2009, 10 (06) :430-436
[7]   Unconventional Translation of C9ORF72 GGGGCC Expansion Generates Insoluble Polypeptides Specific to c9FTD/ALS [J].
Ash, Peter E. A. ;
Bieniek, Kevin F. ;
Gendron, Tania F. ;
Caulfield, Thomas ;
Lin, Wen-Lang ;
DeJesus-Hernandez, Mariely ;
van Blitterswijk, Marka M. ;
Jansen-West, Karen ;
Paul, Joseph W., III ;
Rademakers, Rosa ;
Boylan, Kevin B. ;
Dickson, Dennis W. ;
Petrucelli, Leonard .
NEURON, 2013, 77 (04) :639-646
[8]   RNA-Based Coacervates as a Model for Membraneless Organelles: Formation, Properties, and Interfacial Liposome Assembly [J].
Aumiller, William M., Jr. ;
Cakmak, Fatma Pir ;
Davis, Bradley W. ;
Keating, Christine D. .
LANGMUIR, 2016, 32 (39) :10042-10053
[9]   Staufen- and FMRP-containing neuronal RNPs are structurally and functionally related to somatic P bodies [J].
Barbee, Scott A. ;
Estes, Patricia S. ;
Cziko, Anne-Marie ;
Hillebrand, Jens ;
Luedeman, Rene A. ;
Coller, Jeff M. ;
Johnson, Nick ;
Howlett, Iris C. ;
Geng, Cuiyun ;
Ueda, Ryu ;
Brand, Andrea H. ;
Newbury, Sarah F. ;
Wilhelm, James E. ;
Levine, Richard B. ;
Nakamura, Akira ;
Parker, Roy ;
Ramaswami, Mani .
NEURON, 2006, 52 (06) :997-1009
[10]   P bodies, stress granules, and viral life cycles [J].
Beckham, Carla J. ;
Parker, Roy .
CELL HOST & MICROBE, 2008, 3 (04) :206-212