Preindustrial to present-day changes in tropospheric hydroxyl radical and methane lifetime from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

被引:245
作者
Naik, V. [1 ]
Voulgarakis, A. [2 ]
Fiore, A. M. [3 ,4 ]
Horowitz, L. W. [5 ]
Lamarque, J. -F. [6 ]
Lin, M. [5 ,7 ]
Prather, M. J. [8 ]
Young, P. J. [9 ,10 ]
Bergmann, D. [11 ]
Cameron-Smith, P. J. [11 ]
Cionni, I. [12 ]
Collins, W. J. [13 ]
Dalsoren, S. B. [14 ]
Doherty, R. [15 ]
Eyring, V. [16 ]
Faluvegi, G. [17 ]
Folberth, G. A. [13 ]
Josse, B. [18 ]
Lee, Y. H. [17 ]
MacKenzie, I. A. [15 ]
Nagashima, T. [19 ]
van Noije, T. P. C. [20 ]
Plummer, D. A. [21 ]
Righi, M. [16 ]
Rumbold, S. T. [13 ]
Skeie, R. [14 ]
Shindell, D. T. [17 ]
Stevenson, D. S. [15 ]
Strode, S. [22 ,23 ]
Sudo, K. [24 ]
Szopa, S. [25 ]
Zeng, G. [26 ]
机构
[1] UCAR NOAA Geophys Fluid Dynam Lab, Princeton, NJ USA
[2] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London, England
[3] Columbia Univ, Dept Earth & Environm Sci, Palisades, NY USA
[4] Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY USA
[5] NOAA Geophys Fluid Dynam Lab, Princeton, NJ USA
[6] Natl Ctr Atmospher Res, Boulder, CO 80307 USA
[7] Princeton Univ, Princeton, NJ 08544 USA
[8] Univ Calif Irvine, Dept Earth Syst Sci, Irvine, CA USA
[9] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
[10] NOAA Earth Syst Res Lab, Chem Sci Div, Boulder, CO USA
[11] Lawrence Livermore Natl Lab, Livermore, CA USA
[12] Agenzia Nazl Nuove Tecnol Energia & Sviluppo Econ, Bologna, Italy
[13] Hadley Ctr Climate Predict, Met Off, Exeter, Devon, England
[14] CICERO, Oslo, Norway
[15] Univ Edinburgh, Sch Geosci, Edinburgh, Midlothian, Scotland
[16] Deutsch Zentrum Luft & Raumfahrt, Inst Phys Atmosphare, Oberpfaffenhofen, Germany
[17] NASA, Goddard Inst Space Studies, New York, NY 10025 USA
[18] CNRS, GAME CNRM, Meteofrance, Ctr Natl Rech Meteorol, Toulouse, France
[19] Natl Inst Environm Studies, Tsukuba, Ibaraki, Japan
[20] Royal Netherlands Meteorol Inst, NL-3730 AE De Bilt, Netherlands
[21] Environm Canada, Canadian Ctr Climate Modeling & Anal, Victoria, BC, Canada
[22] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[23] Univ Space Res Assoc, Columbia, MD USA
[24] Nagoya Univ, Dept Earth & Environm Sci, Grad Sch Environm Studies, Nagoya, Aichi 4648601, Japan
[25] LSCE CEA CNRS UVSQ IPSL, Lab Sci Climat & Environm, Paris, France
[26] Natl Inst Water & Atmospher Res, Lauder, New Zealand
基金
英国工程与自然科学研究理事会; 美国国家科学基金会;
关键词
MEAN OH CONCENTRATION; INTERANNUAL VARIABILITY; ICE CORE; ANTHROPOGENIC EMISSIONS; DECADES; OZONE; OXIDATION; GASES; CH4; SIMULATIONS;
D O I
10.5194/acp-13-5277-2013
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
We have analysed time-slice simulations from 17 global models, participating in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), to explore changes in present-day (2000) hydroxyl radical (OH) concentration and methane (CH4) lifetime relative to preindustrial times (1850) and to 1980. A comparison of modeled and observation-derived methane and methyl chloroform lifetimes suggests that the present-day global multi-model mean OH concentration is overestimated by 5 to 10% but is within the range of uncertainties. The models consistently simulate higher OH concentrations in the Northern Hemisphere (NH) compared with the Southern Hemisphere (SH) for the present-day (2000; inter-hemispheric ratios of 1.13 to 1.42), in contrast to observation-based approaches which generally indicate higher OH in the SH although uncertainties are large. Evaluation of simulated carbon monoxide (CO) concentrations, the primary sink for OH, against ground-based and satellite observations suggests low biases in the NH that may contribute to the high north-south OH asymmetry in the models. The models vary widely in their regional distribution of present-day OH concentrations (up to 34 %). Despite large regional changes, the multi-model global mean (mass-weighted) OH concentration changes little over the past 150 yr, due to concurrent increases in factors that enhance OH (humidity, tropospheric ozone, nitrogen oxide (NOx) emissions, and UV radiation due to decreases in stratospheric ozone), compensated by increases in OH sinks (methane abundance, carbon monoxide and non-methane volatile organic carbon (NMVOC) emissions). The large inter-model diversity in the sign and magnitude of preindustrial to present-day OH changes (ranging from a decrease of 12.7% to an increase of 14.6 %) indicate that uncertainty remains in our understanding of the long-term trends in OH and methane lifetime. We show that this diversity is largely explained by the different ratio of the change in global mean tropospheric CO and NOx burdens (Delta CO/Delta NOx, approximately represents changes in OH sinks versus changes in OH sources) in the models, pointing to a need for better constraints on natural precursor emissions and on the chemical mechanisms in the current generation of chemistry-climate models. For the 1980 to 2000 period, we find that climate warming and a slight increase in mean OH (3.5 +/- 2.2 %) leads to a 4.3 +/- 1.9% decrease in the methane lifetime. Analysing sensitivity simulations performed by 10 models, we find that preindustrial to present-day climate change decreased the methane lifetime by about four months, representing a negative feedback on the climate system. Further, we analysed attribution experiments performed by a subset of models relative to 2000 conditions with only one precursor at a time set to 1860 levels. We find that global mean OH increased by 46.4 +/- 12.2% in response to preindustrial to present-day anthropogenic NOx emission increases, and decreased by 17.3 +/- 2.3 %, 7.6 +/- 1.5 %, and 3.1 +/- 3.0% due to methane burden, and anthropogenic CO, and NMVOC emissions increases, respectively.
引用
收藏
页码:5277 / 5298
页数:22
相关论文
共 107 条
[1]  
[Anonymous], 2011, EVALUATION NUMBER 17
[2]   Impacts of mechanistic changes on HOx formation and recycling in the oxidation of isoprene [J].
Archibald, A. T. ;
Cooke, M. C. ;
Utembe, S. R. ;
Shallcross, D. E. ;
Derwent, R. G. ;
Jenkin, M. E. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (17) :8097-8118
[3]   Can a "state of the art" chemistry transport model simulate Amazonian tropospheric chemistry? [J].
Barkley, Michael P. ;
Palmer, Paul I. ;
Ganzeveld, Laurens ;
Arneth, Almut ;
Hagberg, Daniel ;
Karl, Thomas ;
Guenther, Alex ;
Paulot, Fabien ;
Wennberg, Paul O. ;
Mao, Jingqiu ;
Kurosu, Thomas P. ;
Chance, Kelly ;
Mueller, J. -F. ;
De Smedt, Isabelle ;
Van Roozendael, Michel ;
Chen, Dan ;
Wang, Yuxuan ;
Yantosca, Robert M. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2011, 116
[4]   Effects of anthropogenic emissions on tropospheric ozone and its radiative forcing [J].
Berntsen, TK ;
Isaksen, ISA ;
Myhre, G ;
Fuglestvedt, JS ;
Stordal, F ;
Larsen, TA ;
Freckleton, RS ;
Shine, KP .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1997, 102 (D23) :28101-28126
[5]   Two decades of OH variability as inferred by an inversion of atmospheric transport and chemistry of methyl chloroform [J].
Bousquet, P ;
Hauglustaine, DA ;
Peylin, P ;
Carouge, C ;
Ciais, P .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2005, 5 :2635-2656
[6]   Evaluation of the MOCAGE chemistry transport model during the ICARTT/ITOP experiment [J].
Bousserez, N. ;
Attie, J. L. ;
Peuch, V. H. ;
Michou, M. ;
Pfister, G. ;
Edwards, D. ;
Emmons, L. ;
Mari, C. ;
Barret, B. ;
Arnold, S. R. ;
Heckel, A. ;
Richter, A. ;
Schlager, H. ;
Lewis, A. ;
Avery, M. ;
Sachse, G. ;
Browell, E. V. ;
Hair, J. W. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2007, 112 (D10)
[7]   Evaluation of ACCMIP outgoing longwave radiation from tropospheric ozone using TES satellite observations [J].
Bowman, K. W. ;
Shindell, D. T. ;
Worden, H. M. ;
Lamarque, J. F. ;
Young, P. J. ;
Stevenson, D. S. ;
Qu, Z. ;
de la Torre, M. ;
Bergmann, D. ;
Cameron-Smith, P. J. ;
Collins, W. J. ;
Doherty, R. ;
Dalsoren, S. B. ;
Faluvegi, G. ;
Folberth, G. ;
Horowitz, L. W. ;
Josse, B. M. ;
Lee, Y. H. ;
MacKenzie, I. A. ;
Myhre, G. ;
Nagashima, T. ;
Naik, V. ;
Plummer, D. A. ;
Rumbold, S. T. ;
Skeie, R. B. ;
Strode, S. A. ;
Sudo, K. ;
Szopa, S. ;
Voulgarakis, A. ;
Zeng, G. ;
Kulawik, S. S. ;
Aghedo, A. M. ;
Worden, J. R. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (08) :4057-4072
[8]   Improved simulation of isoprene oxidation chemistry with the ECHAM5/MESSy chemistry-climate model: lessons from the GABRIEL airborne field campaign [J].
Butler, T. M. ;
Taraborrelli, D. ;
Fischer, C. Bruehl H. ;
Harder, H. ;
Martinez, M. ;
Williams, J. ;
Lawrence, M. G. ;
Lelieveld, J. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2008, 8 (16) :4529-4546
[9]   A comparison of chemical mechanisms based on TRAMP-2006 field data [J].
Chen, Shuang ;
Ren, Xinrong ;
Mao, Jingqiu ;
Chen, Zhong ;
Brune, William H. ;
Lefer, Barry ;
Rappenglueck, Bernhard ;
Flynn, James ;
Olson, Jennifer ;
Crawford, James H. .
ATMOSPHERIC ENVIRONMENT, 2010, 44 (33) :4116-4125
[10]   DISCUSSION OF CHEMISTRY OF SOME MINOR CONSTITUENTS IN STRATOSPHERE AND TROPOSPHERE [J].
CRUTZEN, P .
PURE AND APPLIED GEOPHYSICS, 1973, 106 (5-7) :1385-1399