A semismooth Newton method for nonlinear symmetric cone programming

被引:3
|
作者
Kong, Lingchen [1 ]
Meng, Qingmin [2 ]
机构
[1] Beijing Jiaotong Univ, Dept Appl Math, Beijing 100044, Peoples R China
[2] Cent Hosp Taian, Tai An 271000, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Euclidean Jordan algebra; Nonlinear symmetric cone programming; Semismooth Newton algorithm; Quadratical convergence; INTERIOR-POINT ALGORITHMS; EUCLIDEAN JORDAN ALGEBRAS; COMPLEMENTARITY-PROBLEMS; CONVERGENCE; PROJECTION;
D O I
10.1007/s00186-012-0393-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we employ the projection operator to design a semismooth Newton algorithm for solving nonlinear symmetric cone programming (NSCP). The algorithm is computable from theoretical standpoint and is proved to be locally quadratically convergent without assuming strict complementarity of the solution to NSCP.
引用
收藏
页码:129 / 145
页数:17
相关论文
共 50 条
  • [1] A semismooth Newton method for nonlinear symmetric cone programming
    Lingchen Kong
    Qingmin Meng
    Mathematical Methods of Operations Research, 2012, 76 : 129 - 145
  • [2] AN INEXACT SEMISMOOTH NEWTON METHOD FOR VARIATIONAL INEQUALITY WITH SYMMETRIC CONE CONSTRAINTS
    Chen, Shuang
    Pang, Li-Ping
    Li, Dan
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2015, 11 (03) : 733 - 746
  • [3] Semismooth Reformulation and Nonsmooth Newton's Method for Solving Nonlinear Semidefinite Programming
    Benahmed, Boubakeur
    Alloun, Amina
    MODELLING, COMPUTATION AND OPTIMIZATION IN INFORMATION SYSTEMS AND MANAGEMENT SCIENCES - MCO 2015, PT 1, 2015, 359 : 411 - 417
  • [4] Extended Semismooth Newton Method for Functions with Values in a Cone
    Bernard, Severine
    Cabuzel, Catherine
    Nuiro, Silvere Paul
    Pietrus, Alain
    ACTA APPLICANDAE MATHEMATICAE, 2018, 155 (01) : 85 - 98
  • [5] Extended Semismooth Newton Method for Functions with Values in a Cone
    Séverine Bernard
    Catherine Cabuzel
    Silvère Paul Nuiro
    Alain Pietrus
    Acta Applicandae Mathematicae, 2018, 155 : 85 - 98
  • [6] A Semismooth Newton Method for Fast, Generic Convex Programming
    Ali, Alnur
    Wong, Eric
    Kolter, J. Zico
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [7] A quadratically convergent semismooth Newton method for nonlinear semidefinite programming without generalized Jacobian regularity
    Feng, Fuxiaoyue
    Ding, Chao
    Li, Xudong
    arXiv,
  • [8] A quadratically convergent semismooth Newton method for nonlinear semidefinite programming without generalized Jacobian regularity
    Feng, Fuxiaoyue
    Ding, Chao
    Li, Xudong
    MATHEMATICAL PROGRAMMING, 2025,
  • [9] Quadratic convergence of a smoothing Newton method for symmetric cone programming without strict complementarity
    Lingchen Kong
    Positivity, 2012, 16 : 297 - 319
  • [10] Quadratic convergence of a smoothing Newton method for symmetric cone programming without strict complementarity
    Kong, Lingchen
    POSITIVITY, 2012, 16 (02) : 297 - 319