Na3V2(PO4)3: an advanced cathode for sodium-ion batteries

被引:292
作者
Zhang, Xianghua [1 ]
Rui, Xianhong [1 ,2 ,3 ]
Chen, Dong [1 ]
Tan, Huiteng [1 ]
Yang, Dan [1 ]
Huang, Shaoming [1 ]
Yu, Yan [2 ,4 ]
机构
[1] Guangdong Univ Technol, Guangzhou Key Lab Low Dimens Mat & Energy Storage, Collaborat Innovat Ctr Adv Energy Mat, Sch Mat & Energy, Guangzhou 510006, Guangdong, Peoples R China
[2] Univ Sci & Technol China, Chinese Acad Sci, Dept Mat Sci & Engn, Key Lab Mat Energy Convers, Hefei 230026, Anhui, Peoples R China
[3] State Key Lab Vanadium & Titanium Resources, Comprehens Utilizat, Panzhihua 617000, Peoples R China
[4] Chinese Acad Sci, Dalian Natl Lab Clean Energy DNL, Dalian 116023, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
CARBON-COATED NA3V2(PO4)(3); HIGH-PERFORMANCE ANODE; ENHANCED ELECTROCHEMICAL PERFORMANCE; SUPERIOR RATE CAPABILITY; NASICON STRUCTURED NA3V2(PO4)(3); EXCELLENT CYCLING STABILITY; NA-STORAGE CATHODE; HARD-CARBON; LITHIUM-ION; LONG-LIFE;
D O I
10.1039/c8nr09391a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Sodium-ion batteries (SIBs) are considered to be the most promising electrochemical energy storage devices for large-scale grid and electric vehicle applications due to the advantages of resource abundance and cost-effectiveness. The electrochemical performance of SIBs largely relies on the intrinsic chemical properties of the cathodic materials. Among the various cathodes, rhombohedral Na3V2(PO4)(3) (NVP), a typical sodium super ionic conductor (NASICON) compound, is very popular owing to its high Na+ mobility and firm structural stability. However, the relatively low electronic conductivity makes the theoretical capacity of NVP cathodes unviable even at low rates, not to mention the high rate of charging/discharging. This is a major drawback of NVPs, limiting their future large-scale applications. Herein, a comprehensive review of the recent progresses made in NVP fabrication has been presented, mainly including the strategies of developing NVP/carbon hybrid materials and elemental doping to improve the electronic conductivity of NVP cathodes and designing 3D porous architectures to enhance Na-ion transportation. Moreover, the application of NVP cathodic materials in Na-ion full batteries is summarized, too. Finally, some remarks are made on the challenges and perspectives for the future development of NVP cathodes.
引用
收藏
页码:2556 / 2576
页数:21
相关论文
共 228 条
[1]  
Alcantara R., 2002, CHEM MATER, V33, P21
[2]   Effect of aluminum doping on carbon loaded Na3V2(PO4)3 as cathode material for sodium-ion batteries [J].
Aragon, M. J. ;
Lavela, P. ;
Alcantara, R. ;
Tirado, J. L. .
ELECTROCHIMICA ACTA, 2015, 180 :824-830
[3]   Effect of Iron Substitution in the Electrochemical Performance of Na3V2(PO4)3 as Cathode for Na-Ion Batteries [J].
Aragon, M. J. ;
Lavela, P. ;
Ortiz, G. F. ;
Tirado, J. L. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (02) :A3077-A3083
[4]   Magnetic Structures of NaFePO4 Maricite and Triphylite Polymorphs for Sodium-Ion Batteries [J].
Avdeev, Maxim ;
Mohamed, Zakiah ;
Ling, Chris D. ;
Lu, Jiechen ;
Tamaru, Mao ;
Yamada, Atsuo ;
Barpanda, Prabeer .
INORGANIC CHEMISTRY, 2013, 52 (15) :8685-8693
[5]   A new polymorph of Na2MnP2O7 as a 3.6 V cathode material for sodium-ion batteries [J].
Barpanda, Prabeer ;
Ye, Tian ;
Avdeev, Maxim ;
Chung, Sai-Cheong ;
Yamada, Atsuo .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (13) :4194-4197
[6]   Structural and electrochemical properties of Na0.72CoO2 as cathode material for sodium-ion batteries [J].
Baster, Dominika ;
Maziarz, Wojciech ;
Swierczek, Konrad ;
Stokosa, Andrzej ;
Molenda, Janina .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2015, 19 (12) :3605-3612
[7]   Predicting capacity of hard carbon anodes in sodium-ion batteries using porosity measurements [J].
Bommier, Clement ;
Luo, Wei ;
Gao, Wen-Yang ;
Greaney, Alex ;
Ma, Shengqian ;
Ji, Xiulei .
CARBON, 2014, 76 :165-174
[8]   Treasure Na-ion anode from trash coke by adept electrolyte selection [J].
Cabello, Marta ;
Chyrka, Taras ;
Klee, Rafael ;
Aragon, Maria J. ;
Bai, Xue ;
Lavela, Pedro ;
Vasylchenko, Gennadiy M. ;
Alcantara, Ricardo ;
Tirado, Jose L. ;
Ortiz, Gregorio F. .
JOURNAL OF POWER SOURCES, 2017, 347 :127-135
[9]   Chemical Synthesis of 3D Graphene-Like Cages for Sodium-Ion Batteries Applications [J].
Cao, Xinxin ;
Pan, Anqiang ;
Liu, Sainan ;
Zhou, Jiang ;
Li, Site ;
Cao, Guozhong ;
Liu, Jun ;
Liang, Shuquan .
ADVANCED ENERGY MATERIALS, 2017, 7 (20)
[10]   Reversible Sodium Ion Insertion in Single Crystalline Manganese Oxide Nanowires with Long Cycle Life [J].
Cao, Yuliang ;
Xiao, Lifen ;
Wang, Wei ;
Choi, Daiwon ;
Nie, Zimin ;
Yu, Jianguo ;
Saraf, Laxmikant V. ;
Yang, Zhenguo ;
Liu, Jun .
ADVANCED MATERIALS, 2011, 23 (28) :3155-+