The airborne transmission of infection between flats in high-rise residential buildings: Particle simulation

被引:81
作者
Gao, N. P. [1 ]
Niu, J. L. [1 ]
Perino, M. [2 ]
Heiselberg, P. [3 ]
机构
[1] Hong Kong Polytech Univ, Dept Bldg Serv Engn, Hong Kong, Hong Kong, Peoples R China
[2] Politecn Torino, DENER, I-10129 Turin, Italy
[3] Aalborg Univ, Hybrid Ventilat Ctr, DK-9000 Aalborg, Denmark
关键词
Particles; Lagrangian method; Eulerian method; Transport; Deposition; LARGE-EDDY SIMULATION; NUMERICAL-SIMULATION; INDOOR ENVIRONMENTS; AEROSOL DEPOSITION; INFLUENZA-A; AIR-FLOW; DISPERSION; TRANSPORT; DROPLETS;
D O I
10.1016/j.buildenv.2008.03.016
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Several case clusters occurred in high-rise residential buildings in Hong Kong in the 2003 SARS (the severe acute respiratory syndrome) epidemic, which motivated a series of engineering investigations into the possible airborne transport routes. It is suspected that, driven by buoyancy force, the polluted air that exits the window of the lower floor may re-enter the immediate upper floor through the window on the same side. This cascade effect has been quantified and reported in a previous paper, and it is found that, by tracer gas concentration analysis, the room in the adjacent upstairs may contain up to 7% of the air directly from the downstairs room. In this study, after validation against the experimental data from literatures, Eulerian and Lagrangian approaches are both adopted to numerically investigate the dispersion of expiratory aerosols between two vertically adjacent flats. It is found that the particle concentration in the upper floor is two to three orders of magnitude lower than in the source floor. 1.0 mu m particles disperse like gaseous pollutants. For coarse particles larger than 20.0 mu m, strong deposition on solid surfaces and gravitational settling effect greatly limit their upward transport. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:402 / 410
页数:9
相关论文
共 37 条
[1]   Indoor particle pollution: effect of wall textures on particle deposition [J].
Abadie, M ;
Limam, K ;
Allard, F .
BUILDING AND ENVIRONMENT, 2001, 36 (07) :821-827
[2]  
[Anonymous], 2005, FLUENT 6 2 US GUID
[3]   Using large eddy simulation to study particle motions in a room [J].
Béghein, C ;
Jiang, Y ;
Chen, QY .
INDOOR AIR, 2005, 15 (04) :281-290
[4]   Transmission of influenza A in human beings [J].
Brankston, Gabrielle ;
Gitterman, Leah ;
Hirji, Zahir ;
Lemieux, Camille ;
Gardam, Michael .
LANCET INFECTIOUS DISEASES, 2007, 7 (04) :257-265
[5]   A study of the dispersion of expiratory aerosols in unidirectional downward and ceiling-return type airflows using a multiphase approach [J].
Chao, C. Y. H. ;
Wan, M. P. .
INDOOR AIR, 2006, 16 (04) :296-312
[6]   Modeling particle distribution and deposition in indoor environments with a new drift-flux model [J].
Chen, FZ ;
Yu, SCM ;
Lai, ACK .
ATMOSPHERIC ENVIRONMENT, 2006, 40 (02) :357-367
[7]   THE SIZE AND THE DURATION OF AIR-CARRIAGE OF RESPIRATORY DROPLETS AND DROPLET-NUCLEI [J].
DUGUID, JP .
JOURNAL OF HYGIENE, 1946, 44 (06) :471-479
[8]   ON PREDICTING PARTICLE-LADEN TURBULENT FLOWS [J].
ELGHOBASHI, S .
APPLIED SCIENTIFIC RESEARCH, 1994, 52 (04) :309-329
[9]   The airborne transmission of infection between flats in high-rise residential buildings: Tracer gas simulation [J].
Gao, N. P. ;
Niu, J. L. ;
Perino, M. ;
Heiselberg, P. .
BUILDING AND ENVIRONMENT, 2008, 43 (11) :1805-1817
[10]   Modeling particle dispersion and deposition in indoor environments [J].
Gao, N. P. ;
Niu, J. L. .
ATMOSPHERIC ENVIRONMENT, 2007, 41 (18) :3862-3876