Thermal conductivity of micro/nano filler filled polymeric composites

被引:21
作者
Li, Zhiguo [1 ,2 ]
Wu, Wenjing [1 ]
Chen, Hong [2 ]
Zhu, Zhenhua [2 ]
Wang, Youshan [3 ]
Zhang, Yong [1 ]
机构
[1] Shanghai Jiao Tong Univ, State Key Lab Met Matrix Composites, Shanghai 200240, Peoples R China
[2] Hangzhou Zhongce Rubber Co Ltd, Hangzhou 310008, Zhejiang, Peoples R China
[3] Harbin Inst Technol, Harbin 150080, Peoples R China
基金
中国国家自然科学基金;
关键词
FINITE-ELEMENT-METHOD; CERAMIC COMPOSITES; CARBON NANOTUBES; RUBBER; SILICON; PARTICULATE; FABRICATION; MANAGEMENT; ELASTOMER; FILMS;
D O I
10.1039/c3ra22482a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The thermal conductivity of emulsion-polymerized styrene-butadiene rubber (ESBR) composites filled with carbon nanotubes (CNTs), zinc oxide (ZnO) and alumina (Al2O3) was predicted using the finite element method (FEM). Two-dimensional (2D) FEM models, which involved the effects of aspect ratio (AR), shape, orientation and thermal conductivity anisotropy (TCA) of the CNTs, and interfacial thermal resistance (ITR), were used to simulate the microstructure of CNT filled ESBR composites. Also, 2D and three-dimensional (3D) FEM models were developed to simulate the microstructure of Al2O3 or ZnO filled ESBR composites. An increase in the thermal conductivity with increasing Al2O3 or ZnO loadings was predicted by the FEM. The orientation angle (OA) of the CNTs and the ITR strongly affect the thermal conductivity as predicted by the FEM. The TCA of the CNTs also has a prominent effect on the thermal conductivity when CNTs have a relatively small OA. At a given filler loading, the thermal conductivity increased with the increasing intrinsic thermal conductivity of the filler over a certain range for a particular shape of filler. The thermal conductivities predicted by the FEM were compared with those predicted by Agari's models and the experimental results. The trends of the thermal conductivity predicted by the FEM agreed with the experimental data. The thermal conductivity of the ESBR composites predicted by 2D and 3D spherical particle filler (SPF) FEM models as a function of ZnO and Al2O3 loading showed that the 3D SPF FEM model agreed well with the experimental results at low loadings (not higher than 20 phr), while the 2D SPF FEM model agreed well with the experimental results at high loadings (higher than 80 phr). In addition to being used for the analysis of existing composites, the proposed FEM models are useful for the design and optimization of new composite materials, and are expected to provide a more insightful understanding into the thermal conductivity of polymeric composites.
引用
收藏
页码:6417 / 6428
页数:12
相关论文
共 45 条
[1]   ESTIMATION ON THERMAL-CONDUCTIVITIES OF FILLED POLYMERS [J].
AGARI, Y ;
UNO, T .
JOURNAL OF APPLIED POLYMER SCIENCE, 1986, 32 (07) :5705-5712
[2]   THERMAL-CONDUCTIVITY OF A POLYMER COMPOSITE FILLED WITH MIXTURES OF PARTICLES [J].
AGARI, Y ;
TANAKA, M ;
NAGAI, S ;
UNO, T .
JOURNAL OF APPLIED POLYMER SCIENCE, 1987, 34 (04) :1429-1437
[3]   Thermal conductivity of multi-walled carbon nanotube sheets: radiation losses and quenching of phonon modes [J].
Aliev, Ali E. ;
Lima, Marcio H. ;
Silverman, Edward M. ;
Baughman, Ray H. .
NANOTECHNOLOGY, 2010, 21 (03)
[4]  
[Anonymous], CHINESE J APPL CHEM
[6]   Carbon nanotube composites for thermal management [J].
Biercuk, MJ ;
Llaguno, MC ;
Radosavljevic, M ;
Hyun, JK ;
Johnson, AT ;
Fischer, JE .
APPLIED PHYSICS LETTERS, 2002, 80 (15) :2767-2769
[7]   Effects of anisotropy, aspect ratio, and nonstraightness of carbon nanotubes on thermal conductivity of carbon nanotube composites [J].
Deng, Fei ;
Zheng, Quan-Shui ;
Wang, Li-Feng ;
Nan, Ce-Wen .
APPLIED PHYSICS LETTERS, 2007, 90 (02)
[8]   New double negative and positives temperature coefficients of conductive EPDM rubber TiC ceramic composites [J].
El-Tantawy, F .
EUROPEAN POLYMER JOURNAL, 2002, 38 (03) :567-577
[9]   Numerical approach to characterization of thermally conductive adhesives [J].
Falat, Tomasz ;
Wymyslowski, Artur ;
Kolbe, Jana .
MICROELECTRONICS RELIABILITY, 2007, 47 (2-3) :342-346
[10]   EFFECT OF REINFORCEMENT PARTICLE-SIZE ON THE THERMAL-CONDUCTIVITY OF A PARTICULATE SILICON CARBIDE-REINFORCED ALUMINUM-MATRIX COMPOSITE [J].
GEIGER, AL ;
HASSELMAN, DPH ;
DONALDSON, KY .
JOURNAL OF MATERIALS SCIENCE LETTERS, 1993, 12 (06) :420-423