Anti-synchronization in Different Hyperchaotic Systems

被引:1
作者
Dou Fu-Quan [1 ]
Sun Jian-An [1 ]
Duan Wen-Shan [1 ]
机构
[1] NW Normal Univ, Coll Phys & Elect Engn, Lanzhou 730070, Peoples R China
基金
中国国家自然科学基金;
关键词
anti-synchronization; hyperchaotic system; active control;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Based on active control theory, anti-synchronization between two different hyperchaotic systems is investigated. The sufficient conditions for achieving anti-synchronization of two different hyperchaotic systems are derived. Moreover, numerical simulations are presented for hyperchaotic Lorenz-Chen system, hyperchaotic Lorenz-Lu system, and hyperchaotic Chen-Lu system to verify the effectiveness and feasibility of the proposed anti-synchronization scheme.
引用
收藏
页码:907 / 912
页数:6
相关论文
共 38 条
[1]  
AFRAIMOVICH VS, 1986, IZV VUZ RADIOFIZ+, V29, P1050
[2]   Synchronization of chaos and hyperchaos using linear and nonlinear feedback functions [J].
Ali, MK ;
Fang, JQ .
PHYSICAL REVIEW E, 1997, 55 (05) :5285-5290
[3]   Huygens's clocks [J].
Bennett, M ;
Schatz, MF ;
Rockwood, H ;
Wiesenfeld, K .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2002, 458 (2019) :563-579
[4]   Generating hyperchaotic Lu attractor via state feedback control [J].
Chen, AM ;
Lu, JN ;
Lü, JH ;
Yu, SM .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 364 :103-110
[5]   The transient ladder synchronization of chaotic systems [J].
Chen, HK ;
Sheu, LS .
PHYSICS LETTERS A, 2006, 355 (03) :207-211
[6]   Synchronization and anti-synchronization coexist in Chen-Lee chaotic systems [J].
Chen, Juhn-Horng ;
Chen, Hsien-Keng ;
Lin, Yu-Kai .
CHAOS SOLITONS & FRACTALS, 2009, 39 (02) :707-716
[7]   A novel hyperchaos system only with one equilibrium [J].
Chen, Zengqiang ;
Yang, Yong ;
Qi, Guoyuan ;
Yuan, Zhuzhi .
PHYSICS LETTERS A, 2007, 360 (06) :696-701
[8]   Controlling hyperchaos in the new hyperchaotic system [J].
Dou, Fu-quan ;
Sun, Han-an ;
Duan, Wen-shan ;
Lue, Ke-pu .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (02) :552-559
[9]   Synchronization and anti-synchronization of a hyperchaotic Chen system [J].
El-Dessoky, M. M. .
CHAOS SOLITONS & FRACTALS, 2009, 39 (04) :1790-1797
[10]   STABILITY THEORY OF SYNCHRONIZED MOTION IN COUPLED-OSCILLATOR SYSTEMS [J].
FUJISAKA, H ;
YAMADA, T .
PROGRESS OF THEORETICAL PHYSICS, 1983, 69 (01) :32-47