Kinetic Monte Carlo approach to modeling thermal decay in perpendicular recording media

被引:17
作者
Fal, T. J. [1 ]
Mercer, J. I. [2 ]
Leblanc, M. D. [1 ]
Whitehead, J. P. [1 ]
Plumer, M. L. [1 ]
van Ek, J. [3 ]
机构
[1] Mem Univ Newfoundland, Dept Phys & Phys Oceanog, St John, NF A1B 3X7, Canada
[2] Mem Univ Newfoundland, Dept Comp Sci, St John, NF A1B 3X7, Canada
[3] Western Digital Corp, San Jose, CA 94588 USA
来源
PHYSICAL REVIEW B | 2013年 / 87卷 / 06期
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
LONG-TIME SCALES; MAGNETIC VISCOSITY; MICROMAGNETIC PREDICTIONS; CHEMICAL-REACTIONS; PARTICLE; SIMULATION; REVERSAL; FLUCTUATIONS; STABILITY; FIELD;
D O I
10.1103/PhysRevB.87.064405
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A procedure is developed to study the evolution of high anisotropy magnetic recording media due to thermally activated grain reversal. It is assumed that the system is composed of single domain grains that evolves by passing through a sequence of relatively long-lived metastable states punctuated by abrupt reversals of individual grains. Solutions to the rate equations describing the sequence of metastable states are calculated using kinetic Monte Carlo. Transition rates are formulated from the Arrhenius-Neel expression in terms of the material parameters, temperature, and applied field. Results obtained from this method are shown to be in good agreement with those calculated from finite-temperature micromagnetics. The method is applied to study the rate dependence of finite-temperature MH loops and the thermal degradation of a recorded bit pattern in perpendicular recording media. A significant advantage of the procedure is its ability to extend simulations over time intervals many orders of magnitude greater than is feasible using standard finite-temperature micromagnetics with relatively modest computational effort. DOI: 10.1103/PhysRevB.87.064405
引用
收藏
页数:10
相关论文
共 41 条
  • [1] Thermal switching field distribution of a single domain particle for field-dependent attempt frequency
    Breth, L.
    Suess, D.
    Vogler, C.
    Bergmair, B.
    Fuger, M.
    Heer, R.
    Brueckl, H.
    [J]. JOURNAL OF APPLIED PHYSICS, 2012, 112 (02)
  • [2] THERMAL FLUCTUATIONS OF A SINGLE-DOMAIN PARTICLE
    BROWN, WF
    [J]. PHYSICAL REVIEW, 1963, 130 (05): : 1677 - +
  • [3] THE COEFFICIENT OF MAGNETIC VISCOSITY .2. THE TIME-DEPENDENCE OF THE MAGNETIZATION OF INTERACTING FINE-PARTICLE MAGNETIC-MATERIALS
    CHANTRELL, RW
    LYBERATOS, A
    WOHLFARTH, EP
    [J]. JOURNAL OF PHYSICS F-METAL PHYSICS, 1986, 16 (07): : L145 - L150
  • [4] Thermal stability of recorded information at high densities
    Charap, SH
    Lu, PL
    He, YJ
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 1997, 33 (01) : 978 - 983
  • [5] Kinetic Monte Carlo modeling of dipole blockade in Rydberg excitation experiment
    Chotia, Amodsen
    Viteau, Matthieu
    Vogt, Thibault
    Comparat, Daniel
    Pillet, Pierre
    [J]. NEW JOURNAL OF PHYSICS, 2008, 10
  • [6] The interpretation of magnetic viscosity
    Crew, DC
    McCormick, PG
    Street, R
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1996, 29 (09) : 2313 - 2319
  • [7] Dittrich R, 2002, J MAGN MAGN MATER, V250, pL12, DOI 10.1016/S0304-8853(02)00388-8
  • [8] Fellow H. N. Bertram, 2001, IEEE T MAG, V37, P1521
  • [9] Sweep-rate-dependent coercivity simulation of FePt particle arrays
    Feng, XB
    Visscher, PB
    [J]. JOURNAL OF APPLIED PHYSICS, 2004, 95 (11) : 7043 - 7045
  • [10] Direct calculation of the attempt frequency of magnetic structures using the finite element method
    Fiedler, G.
    Fidler, J.
    Lee, J.
    Schrefl, T.
    Stamps, R. L.
    Braun, H. B.
    Suess, D.
    [J]. JOURNAL OF APPLIED PHYSICS, 2012, 111 (09)