Mining Hard Augmented Samples for Robust Facial Landmark Localization With CNNs

被引:12
作者
Feng, Zhen-Hua [1 ]
Kittler, Josef [1 ]
Wu, Xiao-Jun [2 ]
机构
[1] Univ Surrey, Ctr Vis Speech & Signal Proc, Guildford GU2 7XH, Surrey, England
[2] Jiangnan Univ, Jiangsu Prov Lab Pattern Recognit & Computat Inte, Wuxi 214122, Peoples R China
基金
中国国家自然科学基金; 英国工程与自然科学研究理事会;
关键词
Facial landmark localisation; deep neural networks; data augmentation; hard augmented example mining; SUPERVISED DESCENT METHOD; FACE ALIGNMENT; REGRESSION; NETWORK; MODELS;
D O I
10.1109/LSP.2019.2895291
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Effective data augmentation is crucial for facial landmark localization with convolutional neural networks (CNNs). In this letter, we investigate different data augmentation techniques that can be used to generate sufficient data for training CNN-based facial landmark localization systems. To the best of our knowledge, this is the first study that provides a systematic analysis of different data augmentation techniques in the area. In addition, an online hard augmented example mining (HAEM) strategy is advocated for further performance boosting. We examine the effectiveness of those techniques using a regression-based CNN architecture. The experimental results obtained on the AFLW and COFW datasets demonstrate the importance of data augmentation and the effectiveness of HAEM. The performance achieved using these techniques is superior to the state-of-the-art algorithms.
引用
收藏
页码:450 / 454
页数:5
相关论文
共 39 条
[1]  
[Anonymous], 2011, P IEEE INT C COMPUTE, DOI [10.1109/ICCVW.2011.6130513, DOI 10.1109/ICCVW.2011.6130513]
[2]  
Belhumeur PN, 2011, PROC CVPR IEEE, P545, DOI 10.1109/CVPR.2011.5995602
[3]   Robust face landmark estimation under occlusion [J].
Burgos-Artizzu, Xavier P. ;
Perona, Pietro ;
Dollar, Piotr .
2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, :1513-1520
[4]  
Cao XD, 2012, PROC CVPR IEEE, P2887, DOI 10.1109/CVPR.2012.6248015
[5]   ACTIVE SHAPE MODELS - THEIR TRAINING AND APPLICATION [J].
COOTES, TF ;
TAYLOR, CJ ;
COOPER, DH ;
GRAHAM, J .
COMPUTER VISION AND IMAGE UNDERSTANDING, 1995, 61 (01) :38-59
[6]   Active appearance models [J].
Cootes, TF ;
Edwards, GJ ;
Taylor, CJ .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2001, 23 (06) :681-685
[7]  
Cubuk Ekin D., 2018, ARXIV180509501
[8]   Cascaded Pose Regression [J].
Dollar, Piotr ;
Welinder, Peter ;
Perona, Pietro .
2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, :1078-1085
[9]   Supervision-by-Registration: An Unsupervised Approach to Improve the Precision of Facial Landmark Detectors [J].
Dong, Xuanyi ;
Yu, Shoou-, I ;
Weng, Xinshuo ;
Wei, Shih-En ;
Yang, Yi ;
Sheikh, Yaser .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :360-368
[10]   Style Aggregated Network for Facial Landmark Detection [J].
Dong, Xuanyi ;
Yan, Yan ;
Ouyang, Wanli ;
Yang, Yi .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :379-388