Effects of surface stability on the morphological transformation of metals and metal oxides as investigated by first-principles calculations

被引:84
作者
Andres, Juan [1 ]
Gracia, Lourdes [1 ]
Gouveia, Amanda Fernandes [2 ]
Ferrer, Mateus Meneghetti [2 ]
Longo, Elson [3 ]
机构
[1] Univ Jaume 1, Dept Analyt & Phys Chem, E-12071 Castellon de La Plana, Spain
[2] Univ Fed Sao Carlos UFSCar, INCTMN, BR-13565905 Sao Carlos, SP, Brazil
[3] Univ Estadual Paulista UNESP, INCTMN, BR-14801907 Araraquara, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
morphology; Wulff theorem; surface energy; ANATASE TIO2 CRYSTALS; SHAPE CONTROL; PHOTOLUMINESCENCE PROPERTIES; LUMINESCENCE PROPERTIES; HYDROTHERMAL SYNTHESIS; LATTICE-DYNAMICS; PHASE-STABILITY; NANOCRYSTALS; NANOPARTICLES; GROWTH;
D O I
10.1088/0957-4484/26/40/405703
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Morphology is a key property of materials. Owing to their precise structure and morphology, crystals and nanocrystals provide excellent model systems for joint experimental and theoretical investigations into surface-related properties. Faceted polyhedral crystals and nanocrystals expose well-defined crystallographic planes depending on the synthesis method, which allow for thoughtful investigations into structure-reactivity relationships under practical conditions. This feature article introduces recent work, based on the combined use of experimental findings and first-principles calculations, to provide deeper knowledge of the electronic, structural, and energetic properties controlling the morphology and the transformation mechanisms of different metals and metal oxides: Ag, anatase TiO2, BaZrO3, and alpha-Ag2WO4. According to the Wulff theorem, the equilibrium shapes of these systems are obtained from the values of their respective surface energies. These investigations are useful to gain further understanding of how to achieve morphological control of complex three-dimensional crystals by tuning the ratio of the surface energy values of the different facets. This strategy allows the prediction of possible morphologies for a crystal and/or nanocrystal by controlling the relative values of surface energies.
引用
收藏
页数:11
相关论文
共 139 条
  • [31] Shape-Controlled Synthesis of Highly Crystalline Titania Nanocrystals
    Dinh, Cao-Thang
    Nguyen, Thanh-Dinh
    Kleitz, Freddy
    Do, Trong-On
    [J]. ACS NANO, 2009, 3 (11) : 3737 - 3743
  • [32] Controllable Growth of Highly Ordered ZnO Nanorod Arrays via Inverted Self-Assembled Monolayer Template
    Dong, J. J.
    Zhang, X. W.
    Yin, Z. G.
    Zhang, S. G.
    Wang, J. X.
    Tan, H. R.
    Gao, Y.
    Si, F. T.
    Gao, H. L.
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2011, 3 (11) : 4388 - 4395
  • [33] Shape Control of Mn 3 O 4 Nanoparticles on Nitrogen- Doped Graphene for Enhanced Oxygen Reduction Activity
    Duan, Jingjing
    Chen, Sheng
    Dai, Sheng
    Qiao, Shi Zhang
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (14) : 2072 - 2078
  • [34] Nanoalloys: From theory to applications of alloy clusters and nanoparticles
    Ferrando, Riccardo
    Jellinek, Julius
    Johnston, Roy L.
    [J]. CHEMICAL REVIEWS, 2008, 108 (03) : 845 - 910
  • [35] MORPHOLOGY AND ETCHING PROCESSES ON MACROSCOPIC METAL-CATALYSTS
    FLYTZANI-STEPHANOPOULOS, M
    SCHMIDT, LD
    [J]. PROGRESS IN SURFACE SCIENCE, 1979, 9 (03) : 83 - 111
  • [36] Reactivity of anatase TiO2 nanoparticles:: The role of the minority (001) surface
    Gong, XQ
    Selloni, A
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (42) : 19560 - 19562
  • [37] Size, Shape, Stability, and Color of Plasmonic Silver Nanoparticles
    Gonzalez, A. L.
    Noguez, Cecilia
    Beranek, J.
    Barnard, A. S.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (17) : 9128 - 9136
  • [38] Gross E, 2012, NAT CHEM, V4, P947, DOI [10.1038/NCHEM.1465, 10.1038/nchem.1465]
  • [39] Anomalous lattice dynamics of ruthenium
    Heid, R
    Pintschovius, L
    Reichardt, W
    Bohnen, KP
    [J]. PHYSICAL REVIEW B, 2000, 61 (18): : 12059 - 12062
  • [40] SOME THEOREMS ON THE FREE ENERGIES OF CRYSTAL SURFACES
    HERRING, C
    [J]. PHYSICAL REVIEW, 1951, 82 (01): : 87 - 93