Hybrid Labels for Brain Tumor Segmentation

被引:7
作者
Ahmad, Parvez [1 ]
Qamar, Saqib [2 ]
Hashemi, Seyed Raein [3 ]
Shen, Linlin [2 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Comp Sci & Technol, Natl Engn Res Ctr Big Data Technol & Syst, Serv Comp Technol & Syst Lab, Wuhan 430074, Peoples R China
[2] Shenzhen Univ, Comp Vis Inst, Sch Comp Sci & Software Engn, Shenzhen, Peoples R China
[3] Brigham & Womens Hosp, 75 Francis St, Boston, MA 02115 USA
来源
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT II | 2020年 / 11993卷
基金
中国国家自然科学基金;
关键词
Deep learning; Convolutional neural networks; Residual-dense connections; Atrous rates; Brain tumor segmentation;
D O I
10.1007/978-3-030-46643-5_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The accurate automatic segmentation of brain tumors enhances the probability of survival rate. Convolutional Neural Network (CNN) is a popular automatic approach for image evaluations. CNN provides excellent results against classical machine learning algorithms. In this paper, we present a unique approach to incorporate contexual information from multiple brain MRI labels. To address the problems of brain tumor segmentation, we implement combined strategies of residual-dense connections, multiple rates of an atrous convolutional layer on popular 3D U-Net architecture. To train and validate our proposed algorithm, we used BRATS 2019 different datasets. The results are promising on the different evaluation metrics.
引用
收藏
页码:158 / 166
页数:9
相关论文
共 25 条
[1]   3D Dense Dilated Hierarchical Architecture for Brain Tumor Segmentation [J].
Ahmad, Parvez ;
Jin, Hai ;
Qamar, Saqib ;
Zheng, Ran ;
Jiang, Wenbin ;
Ahmad, Belal ;
Usama, Mohd .
ICBDC 2019: PROCEEDINGS OF 2019 4TH INTERNATIONAL CONFERENCE ON BIG DATA AND COMPUTING, 2019, :304-307
[2]  
Bakas S, 2019, Arxiv, DOI arXiv:1811.02629
[3]  
Bakas Spyridon, 2017, TCIA
[4]  
Bakas Spyridon, 2017, TCIA
[5]   Data Descriptor: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features [J].
Bakas, Spyridon ;
Akbari, Hamed ;
Sotiras, Aristeidis ;
Bilello, Michel ;
Rozycki, Martin ;
Kirby, Justin S. ;
Freymann, John B. ;
Farahani, Keyvan ;
Davatzikos, Christos .
SCIENTIFIC DATA, 2017, 4
[6]   MRI Tumor Segmentation with Densely Connected 3D CNN [J].
Chen, Lele ;
Wu, Yue ;
DSouza, Adora M. ;
Abidin, Anas Z. ;
Wismueller, Axel ;
Xu, Chenliang .
MEDICAL IMAGING 2018: IMAGE PROCESSING, 2018, 10574
[7]  
Chen LC, 2017, Arxiv, DOI arXiv:1706.05587
[8]   S3D-UNet: Separable 3D U-Net for Brain Tumor Segmentation [J].
Chen, Wei ;
Liu, Boqiang ;
Peng, Suting ;
Sun, Jiawei ;
Qiao, Xu .
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT II, 2019, 11384 :358-368
[9]  
Dolz J, 2019, Arxiv, DOI arXiv:1804.02967
[10]  
Feng X, 2018, Arxiv, DOI arXiv:1812.01049