Spatial Besov regularity for semilinear stochastic partial differential equations on bounded Lipschitz domains

被引:26
作者
Cioica, Petru A. [1 ]
Dahlke, Stephan [1 ]
机构
[1] Univ Marburg, FB Math & Informat, D-35032 Marburg, Germany
关键词
semilinear stochastic partial differential equation; Besov space; weighted Sobolev space; nonlinear approximation; wavelet expansion; ADAPTIVE WAVELET METHODS; SPACES;
D O I
10.1080/00207160.2011.631530
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the spatial regularity of semilinear parabolic stochastic partial differential equations on bounded Lipschitz domains O subset of R-d in the scale B-tau,tau(alpha) (O), 1/tau = alpha/d + 1/p, p >= 2 fixed. The Besov smoothness in this scale determines the order of convergence that can be achieved by adaptive numerical algorithms and other nonlinear approximation schemes. The proofs are performed by establishing weighted Sobolev estimates and combining them with wavelet characterizations of Besov spaces.
引用
收藏
页码:2443 / 2459
页数:17
相关论文
共 31 条
[1]  
[Anonymous], 1990, The analysis of linear partial differential operators
[2]  
[Anonymous], 1985, MONOGRAPHS STUDIES M
[3]  
[Anonymous], 1992, CBMS-NSF Reg. Conf. Ser. in Appl. Math
[4]  
Cioica P. A., 2011, BIT IN PRESS
[5]  
Cioica P. A., 2010, PREPRINT
[6]  
Cohen A, 2001, MATH COMPUT, V70, P27, DOI 10.1090/S0025-5718-00-01252-7
[7]   Adaptive wavelet schemes for nonlinear variational problems [J].
Cohen, A ;
Dahmen, W ;
Devore, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (05) :1785-1823
[8]   Adaptive wavelet methods II - Beyond the elliptic case [J].
Cohen, A ;
Dahmen, W ;
DeVore, R .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2002, 2 (03) :203-245
[9]  
Cohen A., 2003, MATH ITS APPL, V32
[10]  
Dahke S, 2003, FUNCTION SPACES, DIFFERENTIAL OPERATORS AND NONLINEAR ANALYSIS: THE HANS TRIEBEL ANNIVERSARY VOLUME, P267