Motzkin algebras

被引:28
作者
Benkart, Georgia [1 ]
Halverson, Tom [2 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[2] Macalester Coll, Dept Math Stat & Comp Sci, St Paul, MN 55105 USA
基金
美国国家科学基金会;
关键词
REPRESENTATION-THEORY; TEMPERLEY-LIEB;
D O I
10.1016/j.ejc.2013.09.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce an associative algebra M-k(x) whose dimension is the 2k-th Motzkin number. The algebra M-k(x) has a basis of "Motzkin diagrams", which are analogous to Brauer and Temperley-Lieb diagrams. We show for a particular value of x that the algebra M-k(x) is the centralizer algebra of the quantum enveloping algebra U-q(gl(2)) acting on the k-fold tensor power of the sum of the 1-dimensional and 2-dimensional irreducible U-q(gl(2))-modules. We prove that Mk(x) is cellular in the sense of Graham and Lehrer and construct indecomposable M-k(x)-modules which are the left cell modules. When M-k(x) is a semisimple algebra, these modules provide a complete set of representatives of isomorphism classes of irreducible M-k(x)-modules. We compute the determinant of the Gram matrix of a bilinear form on the cell modules and use these determinants to show that M-k(x) is semisimple exactly when x is not the root of certain Chebyshev polynomials. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:473 / 502
页数:30
相关论文
共 31 条
[1]   Motzkin numbers [J].
Aigner, M .
EUROPEAN JOURNAL OF COMBINATORICS, 1998, 19 (06) :663-675
[2]  
CLINE E, 1988, J REINE ANGEW MATH, V391, P85
[3]   Representation theory of towers of recollement: Theory, notes, and examples [J].
Cox, Anton ;
Martin, Paul ;
Parker, Alison ;
Xi, Changchang .
JOURNAL OF ALGEBRA, 2006, 302 (01) :340-360
[4]  
CURTIS C, 1987, PURE APPL MATH, V1
[5]   MOTZKIN NUMBERS [J].
DONAGHEY, R ;
SHAPIRO, LW .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1977, 23 (03) :291-301
[6]   Skew-standard tableaux with three rows [J].
Eu, Sen-Peng .
ADVANCES IN APPLIED MATHEMATICS, 2010, 45 (04) :463-469
[7]  
Flath D., 2008, Enseign. Math, V54, P1
[8]   Canonical bases in tensor products and graphical calculus for U-q(sI(2)) [J].
Frenkel, IB ;
Khovanov, MG .
DUKE MATHEMATICAL JOURNAL, 1997, 87 (03) :409-480
[9]  
Goodman F. M., 1989, COXETER GRAPHS TOWER
[10]   Cellular algebras [J].
Graham, JJ ;
Lehrer, GI .
INVENTIONES MATHEMATICAE, 1996, 123 (01) :1-34