Global existence of strong solutions to a time-dependent 3D Ginzburg-Landau model for superconductivity with partial viscous terms

被引:1
作者
Fan, Jishan [1 ]
Ozawa, Tohru [1 ,2 ]
机构
[1] Nanjing Forestry Univ, Dept Appl Math, Nanjing 210037, Jiangsu, Peoples R China
[2] Waseda Univ, Dept Appl Phys, Tokyo 1698555, Japan
关键词
Ginzburg-Landau model; superconductivity; partial viscous terms; WEAK SOLUTIONS; EQUATIONS; UNIQUENESS;
D O I
10.1002/mana.201200050
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study an initial boundary value problem for a time-dependent 3D Ginzburg-Landau model of superconductivity with partial viscous terms. We prove the global existence of strong solutions. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:1792 / 1796
页数:5
相关论文
共 16 条
[1]   WELL POSEDNESS FOR A PHASE TRANSITION MODEL IN SUPERCONDUCTIVITY WITH VELOCITY AND MAGNETIC CRITICAL FIELDS [J].
Berti, V. ;
Fabrizio, M. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2009, 19 (01) :1-30
[2]   A non-isothermal Ginzburg-Landau model in superconductivity: Existence, uniqueness and asymptotic behaviour [J].
Berti, Valeria ;
Fabrizio, Mauro .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (11) :2565-2578
[3]   Global classical solutions to a non-isothermal dynamical Ginzburg-Landau model in superconductivity [J].
Chen, ZM ;
Hoffmann, KH .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1997, 18 (9-10) :901-920
[4]   Justification of a two dimensional evolutionary Ginzburg-Landau superconductivity model [J].
Chen, ZM ;
Elliot, CM ;
Qi, T .
RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1998, 32 (01) :25-50
[5]   ON A NONSTATIONARY GINZBURG-LANDAU SUPERCONDUCTIVITY MODEL [J].
CHEN, ZM ;
HOFFMANN, KH ;
LIANG, J .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1993, 16 (12) :855-875
[6]  
DU Q, 1994, APPL ANAL, V52, P1
[7]  
Fan J., 2012, INT J MATH ANAL, V6, P1095
[8]   Uniqueness of weak solutions to the Ginzburg-Landau model for superconductivity [J].
Fan, Jishan ;
Ozawa, Tohru .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2012, 63 (03) :453-459
[9]   Uniqueness of weak solutions in critical space of the 3-D time-dependent Ginzburg-Landau equations for superconductivity [J].
Fan, Jishan ;
Gao, Hongjun .
MATHEMATISCHE NACHRICHTEN, 2010, 283 (08) :1134-1143
[10]  
Fan JS, 2009, DIFFER INTEGRAL EQU, V22, P27