Modelling the mechanical behaviour of typical wall-to-floor connection systems for cross-laminated timber structures

被引:44
|
作者
Izzi, Matteo [1 ,2 ]
Polastri, Andrea [1 ]
Fragiacomo, Massimo [1 ,3 ]
机构
[1] CNR, Natl Res Council Italy, Trees & Timber Inst, IVALSA, Via Biasi 75, I-38010 San Michele All Adige, Italy
[2] Univ Trieste, Dept Engn & Architecture, Piazzale Europa 1, I-34127 Trieste, Italy
[3] Univ Aquila, Dept Civil Construct Architectural & Environm Eng, Via Gronchi 18, I-67100 Laquila, Italy
关键词
Cross-laminated timber; Annular-ringed shank nail; Steel-to-timber joint; Metal connector; Wall-to-floor connection; Non-linear modelling; Hysteretic behaviour; DOWEL-TYPE FASTENERS; EMBEDDING STRENGTH; JOINTS; WOOD; DESIGN; TESTS; CLT;
D O I
10.1016/j.engstruct.2018.02.045
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper proposes a numerical model capable of predicting the mechanical behaviour and the failure mechanism of typical wall-to-floor connections for Cross-Laminated Timber structures. Such systems are assembled with angle brackets and hold-downs, anchored to the wall and floor panels with profiled nails and bolts. The metal connector and the elements to which it is fastened are modelled using 3D solid bodies, while the steel-to timber joints are simulated as non-linear hysteretic springs. Shear and tension tests are reproduced on two connection systems and results are compared to the test data obtained from similar configurations. Simulations lead to accurate predictions of the mechanical behaviour (i.e. elastic stiffness, maximum load-carrying capacity, and shape of the hysteresis cycles) and energy dissipation. Finally, the performance when lateral and axial loads are applied simultaneously is investigated. Analyses are carried out by varying the inclination of the load, with respect to the axis of the connector, between 0 degrees and 90 degrees. Results exhibit a quadratic interaction relationship between shear and tension loads, and prove that their coupled effect influences the stiffness and the maximum load-carrying capacity.
引用
收藏
页码:270 / 282
页数:13
相关论文
共 50 条
  • [21] Behaviour and modelling of cross-laminated timber panels with boundary connections subjected to blast loads
    Viau, Christian
    Doudak, Ghasan
    ENGINEERING STRUCTURES, 2019, 197
  • [22] Numerical Investigation of the Fire Resistance of Protected Cross-Laminated Timber Floor Panels
    Menis, Agnese
    Fragiacomo, Massimo
    Clemente, Isaia
    STRUCTURAL ENGINEERING INTERNATIONAL, 2012, 22 (04) : 523 - 532
  • [23] Numerical optimisation of novel connection for cross-laminated timber buildings
    Bita, Hercend Mpidi
    Tannert, Thomas
    ENGINEERING STRUCTURES, 2018, 175 : 273 - 283
  • [24] Mechanical Characterization of Connections for Modular Cross-Laminated Timber Construction Using Underutilized Lumber
    Bhandari, Sujit
    Fischer, Erica C.
    Riggio, Mariapaola
    Muszynski, Lech
    Jahedi, Sina
    JOURNAL OF STRUCTURAL ENGINEERING, 2024, 150 (02)
  • [25] Cross-Laminated Timber Floor: Analysis of the Acoustic Properties and Radiation Efficiency
    Granzotto, Nicola
    Marzi, Arianna
    Gasparella, Andrea
    APPLIED SCIENCES-BASEL, 2022, 12 (07):
  • [26] Behaviour of Cross-Laminated Timber Panels under Cyclic Loads
    Gavric, Igor
    Fragiacomo, Massimo
    Popovski, Marjan
    Ceccotti, Ario
    MATERIALS AND JOINTS IN TIMBER STRUCTURES: RECENT DEVELOPMENTS OF TECHNOLOGY, 2014, 9 : 689 - 702
  • [27] Modelling the fire resistance of cross-laminated timber rib panels
    Kleinhenz, Miriam
    Palma, Pedro
    Just, Alar
    Frangi, Andrea
    FIRE AND MATERIALS, 2024, 48 (07) : 725 - 736
  • [28] Mass-customisation of cross-laminated timber wall systems at early design stages
    Yazdi, Alireza Jalali
    Fini, Alireza Ahmadian Fard
    Forsythe, Perry
    AUTOMATION IN CONSTRUCTION, 2021, 132
  • [29] Fire resistance of unprotected cross-laminated timber (CLT) floor assemblies produced in the USA
    Muszynski, Lech
    Gupta, Rakesh
    Hong, Seung Hyun
    Osborn, Neil
    Pickett, Brent
    FIRE SAFETY JOURNAL, 2019, 107 : 126 - 136
  • [30] An innovative shear-tension angle bracket for Cross-Laminated Timber structures: Experimental tests and numerical modelling
    D'Arenzo, Giuseppe
    Rinaldin, Giovanni
    Fossetti, Marinella
    Fragiacomo, Massimo
    ENGINEERING STRUCTURES, 2019, 197