Finite-dimensional lie algebras with a nonsingular derivation

被引:0
作者
Kostrikin, AI [1 ]
Kuznetsov, MI [1 ]
机构
[1] MOSCOW MV LOMONOSOV STATE UNIV,DEPT MATH,MOSCOW 119699,RUSSIA
来源
ALGEBRA AND ANALYSIS | 1996年
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:81 / 90
页数:10
相关论文
共 50 条
[21]   Finite-dimensional Lie subalgebras of algebras with continuous inversion [J].
Beltita, Daniel ;
Neeb, Karl-Hermann .
STUDIA MATHEMATICA, 2008, 185 (03) :249-262
[22]   IDENTITIES OF FINITE-DIMENSIONAL NILPOTENT LIE-ALGEBRAS [J].
ZAITSEV, MV ;
MISHCHENKO, SP .
IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1991, (10) :36-39
[23]   LOCALLY FINITE-DIMENSIONAL SIMPLE LIE-ALGEBRAS [J].
BAKHTURIN, YA ;
SHTRADE, K .
RUSSIAN ACADEMY OF SCIENCES SBORNIK MATHEMATICS, 1995, 81 (01) :137-161
[24]   JORDAN–KRONECKER INVARIANTS OF FINITE-DIMENSIONAL LIE ALGEBRAS [J].
A. V. BOLSINOV ;
P. ZHANG .
Transformation Groups, 2016, 21 :51-86
[25]   Local Automorphisms on Finite-Dimensional Lie and Leibniz Algebras [J].
Ayupov, Shavkat ;
Kudaybergenov, Karimbergen .
ALGEBRA, COMPLEX ANALYSIS, AND PLURIPOTENTIAL THEORY, 2018, 264 :31-44
[26]   INTERMEDIATE LIE-ALGEBRAS AND THEIR FINITE-DIMENSIONAL REPRESENTATIONS [J].
SHTEPIN, VV .
RUSSIAN ACADEMY OF SCIENCES IZVESTIYA MATHEMATICS, 1994, 43 (03) :559-579
[27]   Biderivations of finite-dimensional complex simple Lie algebras [J].
Tang, Xiaomin .
LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (02) :250-259
[28]   On Some Classes of Bases in Finite-Dimensional Lie Algebras [J].
V. V. Gorbatsevich .
Mathematical Notes, 2023, 114 :165-171
[29]   On Some Classes of Bases in Finite-Dimensional Lie Algebras [J].
Gorbatsevich, V. V. .
MATHEMATICAL NOTES, 2023, 114 (1-2) :165-171
[30]   Indecomposable Finite-Dimensional Representations of a Class of Lie Algebras and Lie Superalgebras [J].
Jakobsen, Hans Plesner .
SUPERSYMMETRY IN MATHEMATICS AND PHYSICS, 2011, 2027 :125-138