Convolutional Neural Network Based Approach Towards Motor Imagery Tasks EEG Signals Classification

被引:159
作者
Chaudhary, Shalu [1 ]
Taran, Sachin [1 ]
Bajaj, Varun [1 ]
Sengur, Abdulkadir [2 ]
机构
[1] Indian Inst Informat Technol Design & Mfg, Elect & Commun Dept, Jabalpur 482005, India
[2] Firat Univ, Fac Technol, Elect & Elect Engn Dept, TR-23119 Elazig, Turkey
关键词
Electroencephalogram (EEG) signal; brain-computer interface system; motor imagery; short time Fourier transform; continuous wavelet transform; convolutional neural network; RECOGNITION; FREQUENCY; INTERFACE; SYSTEM;
D O I
10.1109/JSEN.2019.2899645
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper introduces a methodology based on deep convolutional neural networks (DCNN) for motor imagery (MI) tasks recognition in the brain-computer interface (BCI) system. More specifically, the DCNN is used for classification of the right hand and right foot MI-tasks based electroencephalogram (EEG) signals. The proposed method first transforms the input EEG signals into images by applying the time-frequency (T-F) approaches. The used T-F approaches are short-time-Fourier-transform (STFT) and continuous-wavelet-transform (CWT). After T-F transformation the images of MI-tasks EEG signals are applied to the DCNN stage. The pre-trained DCNN model, AlexNet is explored for classification. The efficiency of the proposed method is evaluated on IVa dataset of BCI competition-III. The evaluation metrics such as accuracy, sensitivity, specificity, F1-score, and kappa value are used for measuring the proposed method results quantitatively. The obtained results show that the CWT approach yields better results than the STFT approach. In addition, the proposed method obtained 99.35% accuracy score is the best one among the existing methods accuracy scores.
引用
收藏
页码:4494 / 4500
页数:7
相关论文
共 37 条
[1]  
[Anonymous], 2014, P 52 ANN M ASS COMP
[2]  
[Anonymous], ADV INTELLIGENT SYST
[3]   The BCI competition III:: Validating alternative approaches to actual BCI problems [J].
Blankertz, Benjamin ;
Mueller, Klaus-Robert ;
Krusienski, Dean J. ;
Schalk, Gerwin ;
Wolpaw, Jonathan R. ;
Schloegl, Alois ;
Pfurtscheller, Gert ;
Millan, Jose D. R. ;
Schroeder, Michael ;
Birbaumer, Niels .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2006, 14 (02) :153-159
[4]   Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms [J].
Dornhege, G ;
Blankertz, B ;
Curio, G ;
Müller, KR .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2004, 51 (06) :993-1002
[5]   Phase synchronization for the recognition of mental tasks in a brain-computer interface [J].
Gysels, E ;
Celka, P .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2004, 12 (04) :406-415
[6]   SVM-based Brain-Machine Interface for controlling a robot arm through four mental tasks [J].
Hortal, E. ;
Planelles, D. ;
Costa, A. ;
Ianez, E. ;
Ubeda, A. ;
Azorin, J. M. ;
Fernandez, E. .
NEUROCOMPUTING, 2015, 151 :116-121
[7]   Adapting subject specific motor imagery EEG patterns in space-time-frequency for a brain computer interface [J].
Ince, Nuri F. ;
Goksu, Fikri ;
Tewfik, Ahmed H. ;
Arica, Sami .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2009, 4 (03) :236-246
[8]   EEG and MEG brain-computer interface for tetraplegic patients [J].
Kauhanen, Laura ;
Nykopp, Tommi ;
Lehtonen, Janne ;
Jylanki, Pasi ;
Heikkonen, Jukka ;
Rantanen, Pekka ;
Alaranta, Hannu ;
Sams, Mikko .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2006, 14 (02) :190-193
[9]   Comparison of signal decomposition methods in classification of EEG signals for motor-imagery BCI system [J].
Kevric, Jasmin ;
Subasi, Abdulhamit .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2017, 31 :398-406
[10]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90