Engineering manganese oxide/nanocarbon hybrid materials for oxygen reduction electrocatalysis

被引:108
作者
Feng, Ju [1 ]
Liang, Yongye [1 ]
Wang, Hailiang [1 ]
Li, Yanguang [1 ]
Zhang, Bo [1 ]
Zhou, Jigang [2 ]
Wang, Jian [2 ]
Regier, Tom [2 ]
Dai, Hongjie [1 ]
机构
[1] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[2] Canadian Light Source Inc, Saskatoon, SK, Canada
关键词
Manganese oxide; nanocarbon; electrocatalysis; oxygen reduction; ALKALINE MEDIA; REACTION ORR; OXIDES; CATALYSTS; ELECTRODE; GRAPHENE; NANOSTRUCTURES; CATHODES;
D O I
10.1007/s12274-012-0256-8
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Manganese oxides are cost-effective and green materials with rich electrochemical properties. Continuous research efforts have been undertaken to obtain MnO (x) materials with improved activity and stability for catalyzing the oxygen reduction reaction (ORR). Here, we have developed a novel ORR catalyst by nucleation and growth of Mn3O4 nanoparticles on graphene oxide (GO) sheets interconnected by electrically conducting multi-walled carbon nanotubes (MWCNTs). X-ray near edge absorption structure (XANES) spectroscopy revealed the partially reduced nature of GO and strong chemical coupling between the nanoparticles and the GO sheets. Incorporation of MWCNTs was found to improve the activity and stability of the hybrid by imparting higher conductivity to the hybrid material. Furthermore, surface oxidation of the manganese oxide nanoparticles through a calcination step was found to increase the density of ORR active sites. The strongly coupled and electrically interconnected Mn3O4/nanocarbon (Mn3O4/Nano-C) hybrid is one of the most active and stable manganese oxide-based ORR catalysts and shows promise for electrochemical energy conversion applications.
引用
收藏
页码:718 / 725
页数:8
相关论文
共 33 条
[11]  
Li YG, 2012, NAT NANOTECHNOL, V7, P394, DOI [10.1038/NNANO.2012.72, 10.1038/nnano.2012.72]
[12]   Covalent Hybrid of Spinel Manganese-Cobalt Oxide and Graphene as Advanced Oxygen Reduction Electrocatalysts [J].
Liang, Yongye ;
Wang, Hailiang ;
Zhou, Jigang ;
Li, Yanguang ;
Wang, Jian ;
Regier, Tom ;
Dai, Hongjie .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (07) :3517-3523
[13]  
Liang YY, 2011, NAT MATER, V10, P780, DOI [10.1038/NMAT3087, 10.1038/nmat3087]
[14]   Pd-Pt Bimetallic Nanodendrites with High Activity for Oxygen Reduction [J].
Lim, Byungkwon ;
Jiang, Majiong ;
Camargo, Pedro H. C. ;
Cho, Eun Chul ;
Tao, Jing ;
Lu, Xianmao ;
Zhu, Yimei ;
Xia, Younan .
SCIENCE, 2009, 324 (5932) :1302-1305
[15]   Electrocatalytic activity of manganese oxides prepared by thermal decomposition for oxygen reduction [J].
Lima, Fabio H. B. ;
Calegaro, Marcelo L. ;
Ticianelli, Edson A. .
ELECTROCHIMICA ACTA, 2007, 52 (11) :3732-3738
[16]   Investigations of the catalytic properties of manganese oxides for the oxygen reduction reaction in alkaline media [J].
Lima, Fabio H. B. ;
Calegaro, Marcelo L. ;
Ticianelli, Edson A. .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2006, 590 (02) :152-160
[17]   Nitrogen-Doped Ordered Mesoporous Graphitic Arrays with High Electrocatalytic Activity for Oxygen Reduction [J].
Liu, Ruili ;
Wu, Dongqing ;
Feng, Xinliang ;
Muellen, Klaus .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (14) :2565-2569
[18]   Transition metal oxides as DMFC cathodes without platinum [J].
Liu, Yan ;
Ishihara, Akimitsu ;
Mitsushima, Shigenori ;
Kamiya, Nobuyuki ;
Ota, Ken-ichiro .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (07) :B664-B669
[19]   Mechanistic study of the reduction of oxygen in air electrode with manganese oxides as electrocatalysts [J].
Mao, LQ ;
Zhang, D ;
Sotomura, T ;
Nakatsu, K ;
Koshiba, N ;
Ohsaka, T .
ELECTROCHIMICA ACTA, 2003, 48 (08) :1015-1021
[20]   LOW-COST OXYGEN ELECTRODE MATERIAL [J].
MEADOWCROFT, DB .
NATURE, 1970, 226 (5248) :847-+