Hofmeister effects of anions on the kinetics of partial reactions of the Na+,K+-ATPase

被引:34
|
作者
Ganea, C
Babes, A
Lüpfert, C
Grell, E
Fendler, K
Clarke, RJ
机构
[1] C Davila Med Univ, Dept Biophys, Bucharest 76241, Romania
[2] Univ Bucharest, Fac Biol, Dept Physiol & Biophys, Bucharest, Romania
[3] Max Planck Inst Biophys, Dept Biophys Chem, D-60596 Frankfurt, Germany
关键词
D O I
10.1016/S0006-3495(99)76888-8
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
The effects of lyotropic anions, particularly perchlorate, on the kinetics of partial reactions of the Na+,K+ ATPase from pig kidney were investigated by two different kinetic techniques: stopped flow in combination with the fluorescent label RH421 and a stationary electrical relaxation technique. It was found that 130 mM NaClO4 caused an increase in the K-d values of both the high- and low-affinity ATP-binding sites, from values of 7.0 (+/- 0.6) mu M and 143 (+/- 17) mu M in 130 mM NaCl solution to values of 42 (+/- 3) mu M and 660 (+/- 100) mu M in 130 mM NaClO4 (pH 7.4, 24 degrees C). The half-saturating concentration of the Na+-binding sites on the E-1 conformation was found to decrease from 8-10 mM in NaCl to 2.5-3.5 mM in NaClO4 solution. The rate of equilibration of the reaction, E1P(Na+)(3) <-> E2P + 3Na(+), decreased from 393 (+/- 51) s(-1) in NaCl solution to 114 (+/- 15) s(-1) in NaClO4. This decrease is attributed predominantly to an inhibition of the E1P(Na+)(3) --> E2P(Na+)(3) transition. The effects can be explained in terms of electrostatic interactions due to perchlorate binding within the membrane and/or protein matrix of the Na+,K+-ATPase membrane fragments and alteration of the local electric field strength experienced by the protein. The kinetic results obtained support the conclusion that the conformational transition E1P(Na+)(3) --> E2P(Na+)(3) is a major charge translocating step of the pump cycle.
引用
收藏
页码:267 / 281
页数:15
相关论文
共 50 条
  • [41] Effect of oligomycin on interaction of Na+ with Na+,K+-ATPase
    Homareda, H
    Ishii, T
    Takeyasu, K
    NA/K-ATPASE AND RELATED ATPASES, 2000, 1207 : 451 - 454
  • [42] EFFECTS OF NUCLEOTIDES AND NA+ ON OUABAIN ACTIVATION OF PHOSPHATASE ASSOCIATED WITH NA+, K+-ATPASE
    PITTS, BJR
    ASKARI, A
    ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1973, 154 (01) : 476 - 482
  • [43] β subunit affects Na+ and K+ affinities of Na+/K+-ATPase: Na+ and K+ affinities of a hybrid Na+/K+-ATPase composed of insect α and mammalian β subunits
    Homareda, Haruo
    Suga, Kei
    Yamamoto-Hijikata, Sachiko
    Eishi, Yoshinobu
    Ushimaru, Makoto
    Hara, Yukichi
    BIOCHEMISTRY AND BIOPHYSICS REPORTS, 2022, 32
  • [44] Na+,K+-ATPase As a Polyfunctional Protein
    Lopina, O. D.
    Bukach, O., V
    Sidorenko, S., V
    Klimanova, E. A.
    BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY, 2022, 16 (03) : 207 - 216
  • [45] Interaction of sanguinarine with the Na+/K+-ATPase
    Janovska, M.
    Kubala, M.
    Simanek, V.
    Ulrichova, J.
    FEBS JOURNAL, 2010, 277 : 207 - 208
  • [46] Ion Pathways in the Na+/K+-ATPase
    Cechova, Petra
    Berka, Karel
    Kubala, Martin
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2016, 56 (12) : 2434 - 2444
  • [47] Salt, Na+,K+-ATPase and hypertension
    Jaitovich, Ariel
    Bertorello, Alejandro M.
    LIFE SCIENCES, 2010, 86 (3-4) : 73 - 78
  • [48] NA+, K+-ATPASE ISOFORMS IN THE RETINA
    SCHNEIDER, B
    INTERNATIONAL REVIEW OF CYTOLOGY-A SURVEY OF CELL BIOLOGY, 1992, 133 : 151 - 185
  • [49] Na+/K+-ATPase-mediated signal transduction and Na+/K+-ATPase regulation
    Zhang, Linan
    Zhang, Zhe
    Guo, Huicai
    Wang, Yongli
    FUNDAMENTAL & CLINICAL PHARMACOLOGY, 2008, 22 (06) : 615 - 621
  • [50] NA+/K+-ATPASE AS THE DIGITALIS RECEPTOR
    REPKE, KRH
    SCHONFELD, W
    TRENDS IN PHARMACOLOGICAL SCIENCES, 1984, 5 (09) : 393 - 397