Vanishing theorems of negative vector bundles on projective varieties and the convexity of coverings

被引:2
作者
Bogomolov, F
De Oliveira, B
机构
[1] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[2] Univ Miami, Dept Math, Coral Gables, FL 33124 USA
关键词
D O I
10.1090/S1056-3911-06-00428-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a new proof of the vanishing of H 1 (X, V) for negative vector bundles V on normal projective varieties X satisfying rank V < dim X. Our proof is geometric, it uses a topological characterization of the affine bundles associated with nontrivial cocycles alpha epsilon H-1 (X, V) of negative vector bundles. Following the same circle of ideas, we use the analytic characteristics of affine bundles to obtain convexity properties of coverings of projective varieties. We suggest a weakened version of the Shafarevich conjecture: the universal covering of a projective manifold X is holornorphically convex modulo the pre-image p(-1)(Z) of a subvariety Z subset of X. We prove this conjecture for projective varieties X whose pullback map p* identifies a nontrivial extension of a negative vector bundle V by O with the trivial extension.
引用
收藏
页码:207 / 222
页数:16
相关论文
共 29 条
[21]   CONVEXITY PROPERTIES OF COVERINGS OF SMOOTH PROJECTIVE VARIETIES [J].
NAPIER, T .
MATHEMATISCHE ANNALEN, 1990, 286 (1-3) :433-479
[22]  
ONISHCHIK AL, 1986, ENCYCL MATH SCI, V10, P2
[23]   HARTSHORNES CONJECTURE [J].
SCHNEIDER, M .
MATHEMATISCHE ANNALEN, 1973, 201 (03) :221-229
[24]  
SHIFFMAN B, 1986, PROGR MATH, V56
[25]  
SIEGEL CL, 1948, ANAL FUNCTIONS SEVER
[26]  
Simpson C T, 1988, J AM MATH SOC, V1, P867, DOI DOI 10.2307/1990994
[27]   COMPLETE KAHLER MANIFOLDS WITH NON-POSITIVE CURVATURE OF FASTER THAN QUADRATIC DECAY [J].
SIU, YT ;
YAU, ST .
ANNALS OF MATHEMATICS, 1977, 105 (02) :225-264
[28]   1-CONVEX GENERALIZATION OF GRAUERTS DIRECT IMAGE THEOREM [J].
SIU, YT .
MATHEMATISCHE ANNALEN, 1971, 190 (03) :203-&
[29]  
[No title captured]