Vanishing theorems of negative vector bundles on projective varieties and the convexity of coverings

被引:2
作者
Bogomolov, F
De Oliveira, B
机构
[1] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[2] Univ Miami, Dept Math, Coral Gables, FL 33124 USA
关键词
D O I
10.1090/S1056-3911-06-00428-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a new proof of the vanishing of H 1 (X, V) for negative vector bundles V on normal projective varieties X satisfying rank V < dim X. Our proof is geometric, it uses a topological characterization of the affine bundles associated with nontrivial cocycles alpha epsilon H-1 (X, V) of negative vector bundles. Following the same circle of ideas, we use the analytic characteristics of affine bundles to obtain convexity properties of coverings of projective varieties. We suggest a weakened version of the Shafarevich conjecture: the universal covering of a projective manifold X is holornorphically convex modulo the pre-image p(-1)(Z) of a subvariety Z subset of X. We prove this conjecture for projective varieties X whose pullback map p* identifies a nontrivial extension of a negative vector bundle V by O with the trivial extension.
引用
收藏
页码:207 / 222
页数:16
相关论文
共 29 条
[1]   ON KODAIRA VANISHING FOR SINGULAR-VARIETIES [J].
ARAPURA, D ;
JAFFE, DB .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 105 (04) :911-916
[2]  
BOGOMOLOV F, 1997, TOPOLOGY ITS APPL, V20, P1
[3]   NOTES ON THE UNIVERSAL COVER OF COMPACT KAHLER-MANIFOLDS [J].
CAMPANA, F .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1994, 122 (02) :255-284
[4]   Deformations of large fundamental groups [J].
de Oliveira, B ;
Katzarkov, L ;
Ramachandran, M .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2002, 12 (04) :651-668
[5]  
DEOLIVEIRA B, 2003, SEMINEGATIVE VECTOR
[6]  
Esnault H., 1992, Lectures on Vanishing Theorems, V20, pvi+164
[7]  
Eyssidieux P, 2004, INVENT MATH, V156, P503, DOI 10.1007/s00222-003-0345-0
[8]  
FRITZSCHE K, 1997, MATH ANN, V230
[9]  
Greene R. E., 1977, P S PURE MATH 2, VXXX, P69
[10]  
GROMOV M, 1991, J DIFFER GEOM, V33, P263