A new robust ridge parameter estimator based on search method for linear regression model

被引:7
作者
Goktas, Atila [1 ]
Akkus, Ozge [1 ]
Kuvat, Aykut [1 ]
机构
[1] Mugla Sitki Kocman Univ, Dept Stat, TR-48000 Mugla, Turkey
关键词
Ridge regression; multicollinearity; ridge parameters; robust ridge parameter; SIMULATION;
D O I
10.1080/02664763.2020.1803814
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A large and wide variety of ridge parameter estimators proposed for linear regression models exist in the literature. Actually proposing new ridge parameter estimator lately proving its efficiency on few cases seems endless. However, so far there is no ridge parameter estimator that can serve best for any sample size or any degree of collinearity among regressors. In this study we propose a new robust ridge parameter estimator that serves best for any case assuring that is free of sample size, number of regressors and degree of collinearity. This is in fact realized by choosing three best from enormous number of ridge parameter estimators performing well in different cases in developing the new ridge parameter estimator in a way of search method providing the smallest mean square error values of regression parameters. After that a simulation study is conducted to show that the proposed parameter is robust. In conclusion, it is found that this ridge parameter estimator is promising in any case. Moreover, a recent data set is used as an example for illustration to show that the proposed ridge parameter estimator is performing better.
引用
收藏
页码:2457 / 2472
页数:16
相关论文
共 22 条
[11]   Multicollinearity and a Ridge Parameter Estimation Approach [J].
Khalaf, Ghadban ;
Iguernane, Mohammed .
JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2016, 15 (02) :400-410
[12]   Performance of some new ridge regression estimators [J].
Kibria, BMG .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2003, 32 (02) :419-435
[13]   SIMULATION STUDY OF RIDGE AND OTHER REGRESSION ESTIMATORS [J].
LAWLESS, JF ;
WANG, P .
COMMUNICATIONS IN STATISTICS PART A-THEORY AND METHODS, 1976, A 5 (04) :307-323
[14]  
Lukman A.F., 2018, PAK J STAT, V34
[15]   A Simulation Study of Some Ridge Regression Estimators under Different Distributional Assumptions [J].
Mansson, Kristofer ;
Shukur, Ghazi ;
Kibria, B. M. Golam .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2010, 39 (08) :1639-1670
[16]  
MARQUARDT CL, 1975, REP NRL PROG, P29
[17]   GENERALIZED INVERSES, RIDGE REGRESSION, BIASED LINEAR ESTIMATION, AND NONLINEAR ESTIMATION [J].
MARQUARDT, DW .
TECHNOMETRICS, 1970, 12 (03) :591-+
[18]  
MASON RL, 1975, COMMUN STAT, V4, P277, DOI 10.1080/03610927308827246
[19]   MONTE-CARLO EVALUATION OF SOME RIDGE-TYPE ESTIMATORS [J].
MCDONALD, GC ;
GALARNEAU, DI .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1975, 70 (350) :407-416
[20]   On Some Ridge Regression Estimators: An Empirical Comparisons [J].
Muniz, Gisela ;
Kibria, B. M. Golam .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2009, 38 (03) :621-630