Autophagy is cytoprotective during cisplatin injury of renal proximal tubular cells

被引:289
作者
Periyasamy-Thandavan, Sudharsan [1 ]
Jiang, Man [1 ]
Wei, Qingqing [1 ]
Smith, Robert [1 ]
Yin, Xiao-Ming [3 ]
Dong, Zheng [1 ,2 ]
机构
[1] Med Coll Georgia, Dept Cellular Biol & Anat, Augusta, GA 30912 USA
[2] Charlie Norwood VA Med Ctr, Augusta, GA USA
[3] Univ Pittsburgh, Dept Pathol, Philadelphia, PA USA
基金
美国国家卫生研究院;
关键词
autophagy; apoptosis; cisplatin; p53; Bcl-2; acute kidney injury;
D O I
10.1038/ki.2008.214
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Autophagy is a cellular process of bulk degradation of damaged organelles, protein aggregates and other macromolecules in the cytoplasm. It is thought to be a general response to stress contributing to cell death; alternatively it might act as a cytoprotective mechanism. Here we found that administration of cisplatin induced the formation of autophagic vesicles and autophagosomes in mouse kidneys. In cultured proximal tubular cells, the nephrotoxin caused autophagy in a dose- and time-dependent manner prior to apoptosis. Notably, autophagy occurred within hours of cisplatin administration but this was partially suppressed by the p53 inhibitor pifithrin-alpha, suggesting that p53 is involved in autophagic signaling. This cisplatin-induced autophagy was attenuated in renal cells stably transfected with Bcl-2, suggesting an anti-autophagic role for this well-known anti-apoptotic protein. Blockade of autophagy with pharmacological inhibitors (3-methyladenine or bafilomycin) or shRNA knockdown of the autophagic gene Beclin increased tubular cell apoptosis during cisplatin treatment. Our study has found that autophagy occurs in acute kidney injury and this may be an important protective mechanism for cell survival.
引用
收藏
页码:631 / 640
页数:10
相关论文
共 46 条
[1]   Cisplatin nephrotoxicity [J].
Arany, I ;
Safirstein, RL .
SEMINARS IN NEPHROLOGY, 2003, 23 (05) :460-464
[2]   Cisplatin-induced cell death is EGFR/src/ERK signaling dependent in mouse proximal tubule cells [J].
Arany, I ;
Megyesi, JK ;
Kaneto, H ;
Price, PM ;
Safirstein, RL .
AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY, 2004, 287 (03) :F543-F549
[3]   Differential roles of hydrogen peroxide and hydroxyl radical in cisplatin-induced cell death in renal proximal tubular epithelial cells [J].
Baek, SM ;
Kwon, CH ;
Kim, JH ;
Woo, JS ;
Jung, JS ;
Kim, YK .
JOURNAL OF LABORATORY AND CLINICAL MEDICINE, 2003, 142 (03) :178-186
[4]   The dynamics of autophagy visualized in live cells - From autophagosome formation to fusion with endo/lysosomes [J].
Bampton, Edward T. W. ;
Goemans, Christoph G. ;
Niranjan, Dhevahi ;
Mizushima, Noboru ;
Tolkovsky, Aviva M. .
AUTOPHAGY, 2005, 1 (01) :23-36
[5]   Recent advances in the pathophysiology of ischemic acute renal failure [J].
Bonventre, JV ;
Weinberg, JM .
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2003, 14 (08) :2199-2210
[6]   Bak regulates mitochondrial morphology and pathology during apoptosis by interacting with mitofusins [J].
Brooks, Craig ;
Wei, Qingqing ;
Feng, Leping ;
Dong, Guie ;
Tao, Yanmei ;
Mei, Lin ;
Xie, Zi-Jian ;
Dong, Zheng .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (28) :11649-11654
[7]   Cisplatin-induced renal cell apoptosis: Caspase 3-dependent and -independent pathways [J].
Cummings, BS ;
Schnellmann, RG .
JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS, 2002, 302 (01) :8-17
[8]   Interleukin-10 inhibits ischemic and cisplatin-induced acute renal injury [J].
Deng, JP ;
Kohda, Y ;
Chiao, H ;
Wang, YQ ;
Hu, XH ;
Hewitt, SM ;
Miyaji, T ;
McLeroy, P ;
Nibhanupudy, B ;
Li, SJ ;
Star, RA .
KIDNEY INTERNATIONAL, 2001, 60 (06) :2118-2128
[9]   Update on mechanisms of ischemic acute kidney injury [J].
Devarajan, Prasad .
JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2006, 17 (06) :1503-1520
[10]   Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival [J].
Ding, Wen-Xing ;
Ni, Hong-Min ;
Gao, Wentao ;
Hou, Yi-Feng ;
Melan, Melissa A. ;
Chen, Xiaoyun ;
Stolz, Donna B. ;
Shao, Zhi-Ming ;
Yin, Xiao-Ming .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (07) :4702-4710