Functional characterization in Xenopus oocytes of Na transport systems from durum wheat reveals diversity among two HKT1;4 transporters

被引:27
作者
Ben Amar, Siwar [1 ,2 ]
Brini, Faical [1 ]
Sentenac, Herve [2 ]
Masmoudi, Khaled [1 ]
Very, Anne-Alienor [2 ]
机构
[1] Univ Sfax, Ctr Biotechnol Sfax, Plant Protect & Improvement Lab, Sfax 3018, Tunisia
[2] Univ Montpellier 2, SupAgro Montpellier, INRA 386, UMR CNRS 5004, F-34060 Montpellier 2, France
关键词
Durum wheat; electrophysiology; HKT1; 4; salt tolerance; sodium transport; Xenopus oocyte; NA+/H+ ANTIPORTER SOS1; SALT TOLERANCE; SODIUM EXCLUSION; PLASMA-MEMBRANE; KEY DETERMINANTS; K+ TRANSPORT; GRAIN-YIELD; D-GENOME; RICE; CHANNEL;
D O I
10.1093/jxb/ert361
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Plant tolerance to salinity constraint involves complex and integrated functions including control of Na uptake, translocation, and compartmentalization. Several members of the high-affinity K transporter (HKT) family, which comprises plasma-membrane transporters permeable to K and Na or to Na only, have been shown to play major roles in plant Na and K homeostasis. Among them, HKT1;4 has been identified as corresponding to a quantitative trait locus (QTL) of salt tolerance in wheat but was not functionally characterized. Here, we isolated two HKT1;4-type cDNAs from a salt-tolerant durum wheat (Triticum turgidum L. subsp. durum) cultivar, Om Rabia3, and investigated the functional properties of the encoded transporters using a two-electrode voltage-clamp technique, after expression in Xenopus oocytes. Both transporters displayed high selectivity for Na, their permeability to other monovalent cations (K, Li, Cs, and Rb) being ten times lower than that to Na. Both TdHKT1;4-1 and TdHKT1;4-2 transported Na with low affinity, although the half-saturation of the conductance was observed at a Na concentration four times lower in TdHKT1;4-1 than in TdHKT1;4-2. External K did not inhibit Na transport through these transporters. Quinine slightly inhibited TdHKT1;4-2 but not TdHKT1;4-1. Overall, these data identified TdHKT1;4 transporters as new Na-selective transporters within the HKT family, displaying their own functional features. Furthermore, they showed that important differences in affinity exist among durum wheat HKT1;4 transporters. This suggests that the salt tolerance QTL involving HKT1;4 may be at least in part explained by functional variability among wheat HKT1;4-type transporters.
引用
收藏
页码:213 / 222
页数:10
相关论文
共 60 条
[1]   Polyamines: molecules with regulatory functions in plant abiotic stress tolerance [J].
Alcazar, Ruben ;
Altabella, Teresa ;
Marco, Francisco ;
Bortolotti, Cristina ;
Reymond, Matthieu ;
Koncz, Csaba ;
Carrasco, Pedro ;
Tiburcio, Antonio F. .
PLANTA, 2010, 231 (06) :1237-1249
[2]   Na+ transport in plants [J].
Apse, Maris P. ;
Blumwald, Eduardo .
FEBS LETTERS, 2007, 581 (12) :2247-2254
[3]   Vacuolar cation/H+ exchange, ion homeostasis, and leaf development are altered in a T-DNA insertional mutant of AtNHX1, the Arabidopsis vacuolar Na+/H+ antiporter [J].
Apse, MP ;
Sottosanto, JB ;
Blumwald, E .
PLANT JOURNAL, 2003, 36 (02) :229-239
[4]   Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis [J].
Apse, MP ;
Aharon, GS ;
Snedden, WA ;
Blumwald, E .
SCIENCE, 1999, 285 (5431) :1256-1258
[5]   AtTPK4, an Arabidopsis tandem-pore K+ channel, poised to control the pollen membrane voltage in a pH- and Ca2+-dependent manner [J].
Becker, D ;
Geiger, D ;
Dunkel, M ;
Roller, A ;
Bertl, A ;
Latz, A ;
Carpaneto, A ;
Dietrich, P ;
Roelfsema, MRG ;
Voelker, C ;
Schmidt, D ;
Mueller-Roeber, B ;
Czempinski, K ;
Hedrich, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (44) :15621-15626
[6]   Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance [J].
Berthomieu, P ;
Conéjéro, G ;
Nublat, A ;
Brackenbury, WJ ;
Lambert, C ;
Savio, C ;
Uozumi, N ;
Oiki, S ;
Yamada, K ;
Cellier, F ;
Gosti, F ;
Simonneau, T ;
Essah, PA ;
Tester, M ;
Véry, AA ;
Sentenac, H ;
Casse, F .
EMBO JOURNAL, 2003, 22 (09) :2004-2014
[7]   Overexpression of wheat Na+/H+ antiporter TNHX1 and H+-pyrophosphatase TVP1 improve salt- and drought-stress tolerance in Arabidopsis thaliana plants [J].
Brini, Faical ;
Hanin, Moez ;
Mezghani, Imed ;
Berkowitz, Gerald A. ;
Masmoudi, Khaled .
JOURNAL OF EXPERIMENTAL BOTANY, 2007, 58 (02) :301-308
[8]   HKT1;5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1 [J].
Byrt, Caitlin S. ;
Platten, J. Damien ;
Spielmeyer, Wolfgang ;
James, Richard A. ;
Lagudah, Evans S. ;
Dennis, Elizabeth S. ;
Tester, Mark ;
Munns, Rana .
PLANT PHYSIOLOGY, 2007, 143 (04) :1918-1928
[9]   Potassium and sodium transport in non-animal cells: the Trk/Ktr/HKT transporter family [J].
Corratge-Faillie, C. ;
Jabnoune, M. ;
Zimmermann, S. ;
Very, A. -A. ;
Fizames, C. ;
Sentenac, H. .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2010, 67 (15) :2511-2532
[10]   A weakly voltage-dependent, nonselective cation channel mediates toxic sodium influx in wheat [J].
Davenport, RJ ;
Tester, M .
PLANT PHYSIOLOGY, 2000, 122 (03) :823-834