Invertible completions of 2 x 2 upper triangular operator matrices

被引:181
作者
Han, JK [1 ]
Lee, HY
Lee, WY
机构
[1] Mokwon Univ, Dept Math Educ, Daejon 301719, South Korea
[2] Woosuk Univ, Dept Math, Wanju Gun, Cheonbuk, South Korea
[3] Sung Kyun Kwan Univ, Dept Math, Suwon 440746, South Korea
关键词
spectrum; regular; 2 x 2 upper triangular operator matrices;
D O I
10.1090/S0002-9939-99-04965-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we prove that if [GRAPHICS] is a 2 x 2 upper triangular operator matrix acting on the Banach space X + Y, then M-C is invertible for some C is an element of L (Y, X) if and only if A is an element of L (X) and B is an element of L (Y) satisfy the following conditions: (i) A is left invertible; (ii) B is right invertible; (iii) X/A(X) congruent to B-1 (0). Furthermore we show that sigma(A) boolean OR sigma(B) = (M-C) boolean OR W, where W is the union of certain of the holes in sigma(M-C) which happen to be subsets of sigma(A) boolean AND sigma(B).
引用
收藏
页码:119 / 123
页数:5
相关论文
共 4 条
[1]   PERTURBATION OF SPECTRUMS OF 2 X-2 OPERATOR MATRICES [J].
DU, HK ;
PAN, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 121 (03) :761-766
[2]  
HALMOS PR, 1973, HILBERT SPACE PROBLE
[3]   THE GHOST OF AN INDEX THEOREM [J].
HARTE, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 106 (04) :1031-1033
[4]  
Harte R., 1988, MONOGRAPHS TXB PURE, V109