Dual-Band Low-Profile Crossed Asymmetric Dipole Antenna on Dual-Band AMC Surface

被引:75
作者
Ta, Son Xuat [1 ]
Park, Ikmo [1 ]
机构
[1] Ajou Univ, Dept Elect & Comp Engn, Suwon 443749, South Korea
来源
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS | 2014年 / 13卷
关键词
Artificial magnetic conductor; asymmetric dipole; circular polarization; dual-band operation; second resonance; T-shaped slit; MAGNETIC CONDUCTOR; EBG; SUBSTRATE;
D O I
10.1109/LAWP.2014.2312950
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A dual-band, low-profile, circularly polarized antenna on an artificial magnetic conductor (AMC) is introduced in this letter. The antenna employs a single feed and two crossed asymmetric dipoles as the primary radiating elements. In order to achieve a low profile and broadband characteristics in terms of impedance matching and 3-dB axial-ratio (AR) bandwidths at both bands, a dual-band AMC is utilized as a reflector of the antenna. The AMC structure utilizes four T-shaped slits in a unit-cell patch to significantly reduce its first and second resonant frequency ratio, and consequently its first and second resonances are easily adjusted for the desired operating frequencies. For performance verification, an antenna prototype was fabricated with an overall 2.4-GHz frequency size of 0.576 lambda(0) x 0.576 lambda(0) x 0.088 lambda(0) (72 x 72 x 11mm(3)). The measurements resulted in impedance bandwidths of 2.20-2.60 and 4.90-5.50 GHz for vertical bar S-11 vertical bar < -10 dB and 3-dB AR bandwidths of 2.30-2.50 and 5.05-5.35 GHz. Additionally, the antenna yields right-hand circular polarization and high antenna efficiency at both bands.
引用
收藏
页码:587 / 590
页数:4
相关论文
共 15 条
[1]   Multiband-integrated antenna/artificial magnetic conductor [J].
Abbasi, N. A. ;
Langley, R. J. .
IET MICROWAVES ANTENNAS & PROPAGATION, 2011, 5 (06) :711-717
[2]   Design methodology for Sievenpiper high-impedance surfaces:: An artificial magnetic conductor for positive gain electrically small antennas [J].
Clavijo, S ;
Díaz, RE ;
McKinzie, WE .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2003, 51 (10) :2678-2690
[3]   TE Surface Wave Resonances on High-Impedance Surface Based Antennas: Analysis and Modeling [J].
Costa, Filippo ;
Luukkonen, Olli ;
Simovski, Constantin R. ;
Monorchio, Agostino ;
Tretyakov, Sergei A. ;
de Maagt, Peter M. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2011, 59 (10) :3588-3596
[4]   Dual frequency band antenna combined with a high impedance band gap surface [J].
Folayan, O. ;
Langley, R. .
IET MICROWAVES ANTENNAS & PROPAGATION, 2009, 3 (07) :1118-1126
[5]   UC-EBG on LTCC for 60-GHz Frequency Band Antenna Applications [J].
Lamminen, Antti E. I. ;
Vimpari, Antti R. ;
Saily, Jussi .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2009, 57 (10) :2904-2912
[6]   Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate [J].
Mosallaei, H ;
Sarabandi, K .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2004, 52 (09) :2403-2414
[7]   Dual-band wide-beam crossed asymmetric dipole antenna for GPS applications [J].
Ta, S. X. ;
Park, I. ;
Ziolkowski, R. W. .
ELECTRONICS LETTERS, 2012, 48 (25) :1580-1581
[8]  
Ta S. X., 2013, P INT C ADV EL MAT M
[9]  
Ta S.X., 2013, J ELECTROMAGN ENG SC, V13, P113
[10]   Circularly Polarized Crossed Dipole on an HIS for 2.4/5.2/5.8-GHz WLAN Applications [J].
Ta, Son Xuat ;
Park, Ikmo ;
Ziolkowski, Richard W. .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2013, 12 :1464-1467