Dislocation climb models from atomistic scheme to dislocation dynamics

被引:27
作者
Niu, Xiaohua [1 ]
Luo, Tao [1 ]
Lu, Jianfeng [2 ,3 ,4 ]
Xiang, Yang [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Hong Kong, Peoples R China
[2] Duke Univ, Dept Math, Durham, NC 27708 USA
[3] Duke Univ, Dept Phys, Durham, NC 27708 USA
[4] Duke Univ, Dept Chem, Durham, NC 27708 USA
基金
美国国家科学基金会;
关键词
Dislocation climb; Vacancy diffusion; Pipe diffusion; Dislocation jogs; Dislocation dynamics; SELF-DIFFUSION; ALUMINUM; CORES; GLIDE; LOOPS;
D O I
10.1016/j.jmps.2016.11.012
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We develop a mesoscopic dislocation dynamics model for vacancy-assisted dislocation climb by upscalings from a stochastic model on the atomistic scale. Our models incorporate microscopic mechanisms of (i) bulk diffusion of vacancies, (ii) vacancy exchange dynamics between bulk and dislocation core, (iii) vacancy pipe diffusion along the dislocation core, and (iv) vacancy attachment-detachment kinetics at jogs leading to the motion of jogs. Our mesoscopic model consists of the vacancy bulk diffusion equation and a dislocation climb velocity formula. The effects of these microscopic mechanisms are incorporated by a Robin boundary condition near the dislocations for the bulk diffusion equation and a new contribution in the dislocation climb velocity due to vacancy pipe diffusion driven by the stress variation along the dislocation. Our climb formulation is able to quantitatively describe the translation of prismatic loops at low temperatures when the bulk diffusion is negligible. Using this new formulation, we derive analytical formulas for the climb velocity of a straight edge dislocation and a prismatic circular loop. Our dislocation climb formulation can be implemented in dislocation dynamics simulations to incorporate all the above four microscopic mechanisms of dislocation climb.
引用
收藏
页码:242 / 258
页数:17
相关论文
共 19 条
[1]   Enabling strain hardening simulations with dislocation dynamics [J].
Arsenlis, A. ;
Cai, W. ;
Tang, M. ;
Rhee, M. ;
Oppelstrup, T. ;
Hommes, G. ;
Pierce, T. G. ;
Bulatov, V. V. .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2007, 15 (06) :553-595
[2]   Tensile response of passivated films with climb-assisted dislocation glide [J].
Ayas, C. ;
Deshpande, V. S. ;
Geers, M. G. D. .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2012, 60 (09) :1626-1643
[3]  
Balluffi RW, 2005, KINETICS OF MATERIALS, P1
[4]   Plane-strain discrete dislocation plasticity with climb-assisted glide motion of dislocations [J].
Danas, K. ;
Deshpande, V. S. .
MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2013, 21 (04)
[5]   Atomistic simulation of the atomic structure and diffusion within the core region of an edge dislocation in aluminum [J].
Fang, QF ;
Wang, R .
PHYSICAL REVIEW B, 2000, 62 (14) :9317-9324
[6]   Investigations of pipe-diffusion-based dislocation climb by discrete dislocation dynamics [J].
Gao, Y. ;
Zhuang, Z. ;
Liu, Z. L. ;
You, X. C. ;
Zhao, X. C. ;
Zhang, Z. H. .
INTERNATIONAL JOURNAL OF PLASTICITY, 2011, 27 (07) :1055-1071
[7]   Multiscale Theory of Dislocation Climb [J].
Geslin, Pierre-Antoine ;
Appolaire, Benoit ;
Finel, Alphonse .
PHYSICAL REVIEW LETTERS, 2015, 115 (26)
[8]   Parametric dislocation dynamics: A thermodynamics-based approach to investigations of mesoscopic plastic deformation [J].
Ghoniem, NM ;
Tong, SH ;
Sun, LZ .
PHYSICAL REVIEW B, 2000, 61 (02) :913-927
[9]   Three-dimensional formulation of dislocation climb [J].
Gu, Yejun ;
Xiang, Yang ;
Quek, Siu Sin ;
Srolovitz, David J. .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2015, 83 :319-337
[10]  
Hirth J.P., 1982, Theory of Dislocations