Approximation of Fuzzy Sets by Interval Type-2 Trapezoidal Fuzzy Sets

被引:24
|
作者
Shen, Yinghua [1 ]
Pedrycz, Witold [1 ,2 ,3 ]
Wang, Xianmin [4 ]
机构
[1] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB T6R 2G7, Canada
[2] King Abdulaziz Univ, Dept Elect & Comp Engn, Fac Engn, Jeddah 21589, Saudi Arabia
[3] Polish Acad Sci, Syst Res Inst, PL-01447 Warsaw, Poland
[4] China Univ Geosci, Inst Geophys & Geomat, Hubei Subsurface Multiscale Imaging Key Lab, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
Fuzzy sets; Shape; Approximation algorithms; Optimization; Skeleton; Semantics; Cybernetics; Fuzzy set approximation; interval type-2 trapezoidal fuzzy set (IT2 TFS); Lagrange multipliers; particle swarm optimization (PSO); principle of justifiable granularity; trapezoidal fuzzy set (TFS); TRIANGULAR APPROXIMATIONS; NUMBERS; PRINCIPLE;
D O I
10.1109/TCYB.2018.2886725
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose a gradient-based method to approximate a fuzzy set through a trapezoidal fuzzy set (TFS). By adding some constraints in the formulated optimization problem, the major characteristics of the fuzzy set such as the core, the major part of the support, and the shape of the membership function could be preserved; also the form of the optimized result as a TFS is guaranteed. We regard the optimized TFS as the "skeleton" (blueprint) of the original fuzzy set. Based on this skeleton, we further extend the TFS to a higher type, that is, an interval type-2 TFS (IT2 TFS), so that more information about the original fuzzy set could be captured but the number of the parameters used to describe the original fuzzy set is still maintained low (nine parameters are required for an IT2 TFS). The principle of justifiable granularity is used to ensure that the formed type-2 information granule exhibits a sound interpretation. Both synthetic fuzzy sets and those constructed by the fuzzy C-means algorithm applied to the publicly available data have been used to demonstrate the usefulness of the proposed approximation methods.
引用
收藏
页码:4722 / 4734
页数:13
相关论文
共 50 条
  • [1] Short Remark on Fuzzy Sets, Interval Type-2 Fuzzy Sets, General Type-2 Fuzzy Sets and Intuitionistic Fuzzy Sets
    Castillo, Oscar
    Melin, Patricia
    Tsvetkov, Radoslav
    Atanassov, Krassimir T.
    INTELLIGENT SYSTEMS'2014, VOL 1: MATHEMATICAL FOUNDATIONS, THEORY, ANALYSES, 2015, 322 : 183 - 190
  • [2] An Approach for Achieving Consistency for Symmetric Trapezoidal Interval Type-2 Fuzzy Sets
    Xu, Jiuping
    Xu, Kang
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2019, 2019
  • [3] Extending Similarity Measures of Interval Type-2 Fuzzy Sets to General Type-2 Fuzzy Sets
    McCulloch, Josie
    Wagner, Christian
    Aickelin, Uwe
    2013 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ - IEEE 2013), 2013,
  • [4] On defuzzification of interval type-2 fuzzy sets
    Starczewski, Janusz T.
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING - ICAISC 2008, PROCEEDINGS, 2008, 5097 : 333 - 340
  • [5] An Entropy of Interval Type-2 Fuzzy Sets
    Zheng, Gao
    Yin, Shiwei
    MECHATRONICS AND INDUSTRIAL INFORMATICS, PTS 1-4, 2013, 321-324 : 1999 - 2003
  • [6] On the Variance of Interval Type-2 Fuzzy Sets
    Figueroa-Garcia, Juan Carlos
    Ramos-Cuesta, Jennifer Soraya
    Hernandez-Perez, German
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2023, 31 (07) : 2320 - 2330
  • [7] On interval type-2 rough fuzzy sets
    Zhang, Zhiming
    KNOWLEDGE-BASED SYSTEMS, 2012, 35 : 1 - 13
  • [8] Constrained Interval Type-2 Fuzzy Sets
    D'Alterio, Pasquale
    Garibaldi, Jonathan M.
    John, Robert, I
    Pourabdollah, Amir
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2021, 29 (05) : 1212 - 1225
  • [9] INTERVAL TYPE-2 FUZZY ROUGH SETS AND INTERVAL TYPE-2 FUZZY CLOSURE SPACES
    Sharan, S.
    Tiwar, S. P.
    Yadav, V. K.
    IRANIAN JOURNAL OF FUZZY SYSTEMS, 2015, 12 (03): : 113 - 125
  • [10] The New Fuzzy Analytical Hierarchy Process with Interval Type-2 Trapezoidal Fuzzy Sets and Its Application
    Sam'an, Muhammad
    Dasril, Yosza
    Muslim, Much Aziz
    FUZZY INFORMATION AND ENGINEERING, 2021, 13 (03) : 391 - 419