Chorded complexes and a necessary condition for a monomial ideal to have a linear resolution

被引:13
作者
Connon, E. [1 ]
Faridi, S. [1 ]
机构
[1] Dalhousie Univ, Dept Math & Stat, Halifax, NS B3H 3J5, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Linear resolution; Monomial ideal; Chordal graph; Simplicial complex; Simplicial homology; Stanley-Reisner complex; Facet complex; Chordal hypergraph; HYPERGRAPHS; RINGS;
D O I
10.1016/j.jcta.2013.05.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we extend one direction of Frtiberg's theorem on a combinatorial classification of quadratic monomial ideals with linear resolutions. We do this by generalizing the notion of a chordal graph to higher dimensions with the introduction of d-chorded and orientably-d-cycle-complete simplicial complexes. We show that a certain class of simplicial complexes, the d-dimensional trees, correspond to ideals having linear resolutions over fields of characteristic 2 and we also give a necessary combinatorial condition for a monomial ideal to be componentwise linear over all fields. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:1714 / 1731
页数:18
相关论文
共 20 条
[1]  
[Anonymous], 1990, TOPICS ALGEBRA
[2]  
Berge Claude, 1989, Combinatorics of finite sets
[3]   Simplicial cycles and the computation of simplicial trees [J].
Caboara, Massimo ;
Faridi, Sara ;
Selinger, Peter .
JOURNAL OF SYMBOLIC COMPUTATION, 2007, 42 (1-2) :74-88
[4]   ODD-CYCLE-FREE FACET COMPLEXES AND THE KONIG PROPERTY [J].
Caboara, Massimo ;
Faridi, Sara .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2011, 41 (04) :1059-1079
[5]  
Connon E., 2013, ARXIV13062857
[6]  
Connon E., 2013, PREPRINT
[7]   Resolutions of Stanley-Reisner rings and Alexander duality [J].
Eagon, JA ;
Reiner, V .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1998, 130 (03) :265-275
[8]  
Emtander E, 2010, MATH SCAND, V106, P50
[9]  
Faridi S, 2006, LECT NOTES PURE APPL, V244, P85
[10]   Simplicial trees are sequentially Cohen-Macaulay [J].
Faridi, S .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2004, 190 (1-3) :121-136